
BE électronique automobile 5e année ESE

Presentation of MPC56 45S
MCU - Ultra reliable MCU for

automotive and industrial
instrument cluster

http://www.alexandre-boyer.fr

Alexandre Boyer
Patrick Tounsi

 5e année ESE
October 2016

BE électronique automobile 5e année ESE

 2

I - Presentation of the MCU MPC5645S .. 3
II - MPC5645S programming main steps ... 4
III - Clock generation description ... 5

1. Clock architecture ... 5
1. Fast external oscillator (FXOSC) .. 7
2. FM PLL0 ... 7

IV - Mode entry module (MC_ME) ... 9
1. Presentation of the different modes ... 10
2. Mode entry module registers ... 11

a. Enabling modes ... 11
b. Mode configuration .. 12
c. Peripheral configuration .. 12
d. System mode selection and transition .. 13

3. Summary – MCU initialization procedure .. 14
V - Wake up Unit (WKPU) ... 14
VI - GPIO pad configuration (System Integration Unit Lite) ... 16

VII - Interrupt configuration ... 16
1. Presentation of INTC and interrupt vector .. 16
2. Enabling maskable interrupt .. 18
3. Configuring hardware triggered interrupt ... 18
4. Configuring software triggered interrupt .. 18

VIII - Periodic interrupt Timer (PIT) ... 19
IX - FlexCAN module .. 19
X - DSPI module ... 20
XI - Display Control Unit (DCU3) ... 20

1. Principles ... 20

2. DCU interface signals ... 22
3. Configuration of the interface signals with TFT-LCD panel .. 23

4. Configuration of the graphical layers .. 24
5. Configuration of the Background and cursor layers ... 26

6. Color Look-Up Table (CLUT) .. 27
7. Configuration of the operating mode .. 27
8. Timing management ... 28
9. Error detection and interrupt generation ... 29
10. Image storage and encoding .. 30
11. General procedure to display an image ... 31

XII - Stepper Motor Controller (SMC) .. 32

BE électronique automobile 5e année ESE

 3

This document aims at providing basic information for application development on the
microcontroller MPC56045S. This microcontroller is the central unit of the instrument cluster
used in this lab.
This microcontroller has the same core architecture than the MPC5604B and shares several
peripherals. That's why the content of the document is not exhaustive and does not detail
every part of the microcontroller (MCU). Some basic peripherals described in the document "
Presentation of MPC5604B MCU (Qorivva)" are omitted since they are similar. Moreover,
only the peripherals and functions which are required for the lab are presented.
For more technical information about the component, please refer to the datasheet
MPC5645SRM.pdf. Links to the datasheet will be provided in this document.

Remark: sometimes, the register names given in the datasheet do not match with those
provided by the MCU library MPC5645S.h. Don’t hesitate to verify the right name in the
library.

I - Presentation of the MCU MPC5645S
MPC5645S is a MCU developed by NXP Semiconductor
dedicated to the instrument cluster applications, such as TFT-LCD
display, gauge drive, sound generator. It is a 32 bit MCU
dedicated to automotive body applications designed in CMOS
90nm technology. Its core is based on a Power Architecture ® and
a e200z4d CPU. The version used in the Lab is MPC5645S,
which is mounted in a LQFP 176 package.
Its main characteristics are:

� Up to 2MB of ECC Flash memory
� Up to 64 KB of ECC SRAM memory
� Up to 1 MB of Graphic SRAM
� One interface for an external Quad SPI serial Flash memory
� Core frequency up to 125 MHz, two internal PLL
� An interrupt controller (INTC) with 171 selectable priority interrupt vectors (163

peripheral interrupt request sources and 8 software interrupt request sources, 16
priority levels)

� 16 channels for eDMA
� 1 Display Control Unit (DCU3)
� 1 Graphic accelerator
� 1 Video Input Unit (VIU2)
� 4 Stepper Motor Controllers (SMC) with Stepper Stall Detect (SSD)
� 16 channels for 10-bit analog-to-digital converters (ADC)
� 2 serial peripheral interface (DSPI) modules, 3 serial communication interface

(LINFlex), 3 CAN modules (FlexCAN)
� Up to 128 configurable general purpose input-output (I/O)
� 4 periodic interrupt timers (PIT) with 32-bit counter resolution
� Device testing based on JTAG bus (IEEE 1149.1)

BE électronique automobile 5e année ESE

 4

Fig. 1 presents the block diagram of the MCU.

Figure 1 - Block diagram of MPC5645S (MPC5645SRM.pd f - p. 58)

II - MPC5645S programming main steps
This part aims at giving the main steps for the programming of the MCU. You are not forced
to follow this sequence, it intends only to help you to start with programming.

� Initialization of system clock and modes for system and peripherals (see Chapters 3
and 4 for clock generation, Chapter 5 for mode entry module MC_ME).

BE électronique automobile 5e année ESE

 5

The operation mode must be defined at initialization for every peripheral. Enter in
RUNx (x = 0 to 3) mode (see Chapter 5 for mode entry module MC_ME)

� Activate/inhibit software watchdog
� Configure input-output pads (direction, alternate function activation, output drive,

pull-up, pull-down, filtering) (see chapter 8 for System Integration Unit Lite module
SIUL)

� Configure peripherals (clock, interrupt enable, parameters, energy mode…)
� Installation of INTC interrupt handlers
� Enable maskable interrupt requests
� Main program

The register names can be found in the MPC5645S datasheet, but the given names can differ
from the actual name defined in the MCU library. Refer to Refer to the header file
MPC5645S.h (normally included in your projects) to find the correct names of registers and
bits.

III - Clock generation description
Refer to Chapter 8 – Clock description of MPC5645SRM.pdf for more details about the clock
architecture, the different clock sources and Clock generation module (MC_CGM) for more
details about the internal clock generation. Only the configuration of the Pierce oscillator
(FXOSC) and the primary PLL (FMPLL0) are presented in this document. The activation and
selection of clock sources for the system clock are managed by the mode entry MC_ME
module (see chapter IV of this document).

1. Clock architecture
The architecture of the internal clock is described in Figure 3. The system clock (sys_clk) can
reach up to 125 MHz. It can be built from three selectable sources:

� Fast external quartz oscillator (FXOSC), 4 – 16 MHz
� Fast internal RC oscillator (FIRC), 16 MHz
� Primary Frequency modulated phase locked loop (FMPLL0), synchronized for a 4 to

120 MHz clock reference. It can deliver a clock frequency up to 256 MHz.

Except the peripherals included in one of the four peripheral set (see Figure 2) of those using
an auxiliary clock use the system clock as reference clock.

Figure 2 – Peripheral sets (MPC5645SRM.pdf - p. 203 – Table. 8-1)

The circuit includes five auxiliary clocks dedicated to certain peripherals. If these peripherals
are synchronized by an auxiliary clock, they can operate at a clock rhythm independent from
the system clock. The five auxiliary clocks are:

� Auxiliary clock 0: Display Control Unit (DCU3)
� Auxiliary clock 1: eMIOS0
� Auxiliary clock 2: eMIOS1
� Auxiliary clock 3: Quad SPI

BE électronique automobile 5e année ESE

 6

� Auxiliary clock 4: DCU Lite

The auxiliary clocks can be provided by the FXOSC, the FIRC, the primary and secondary
FMPLL (FMPLL0 and 1).
The quality of clock sources is checked by the Clock Monitor Unit (CMU). This module can
detect loss of clock integrity and switch to a SAFE mode in case of clock failure interrupt. It
can also be used as frequency meter.

Figure 3 – Clock architecture (MPC5645SRM.pdf - p. 204 – Fig. 8-1)

The selection of a clock source for the system clock is done with the register
CGM_OCDS_SC. The field SELCTL selects the clock source while the field SELDIV
configures the clock division ratio. The register CGM_SC_SS gives the status of the source of
the system clock.

BE électronique automobile 5e année ESE

 7

The sources of the auxiliary clock and the dividing ratios are configured by the registers
CGM_ACx_DC[0..3], x = 0..4.

1. Fast external oscillator (FXOSC)
Refer to Chapter 8.4.1 for more information about FXOSC. This Pierce oscillator uses either
an external oscillator circuit or an external quartz crystal. It can provide a clock source for the
system clock and an input for the FMPLL0 and 1. The energy management, the activation and
the selection of FXOSC as system clock are controlled by the mode entry MC_ME module.
This block does not contain any configuration register. The FXOSC is activated by the bit
FXOSCON in the ME.RUN[x] register of the MC_ME module. The availability of a stable
oscillator clock is indicated by the status bit S_FXOSC in the register ME_GS of the MC_ME
module.

2. FM PLL0
Refer to chapter 8.5 for more information about the two FMPLL. Only the primary FMPLL
(FMPLL0) is described here, as it is the only PLL that can serves to produce the system clock.
Note that FMPLL1 can be used as auxiliary clock source.
The FMPLL enables the generation of high speed clock (up to 256 MHz) from 4-120 MHz
clock source, which can be configured by software. FMPLL supports frequency modulation
of the system clock in order to reduce electromagnetic interference emission. The modulant
signal is a triangular waveform, with frequency up to 100 KHz and modulation depth
comprised between 0 and 4 %. The energy management, the activation and the selection of
FMPLL as system clock are controlled by the mode entry MC_ME module.
Figure 4 presents the block diagram of the FMPLL. The frequency of the PLL output (PHI)
depends on register IDF, ODF and NDIV, according to the following formula:

ODFIDF

NDIVclkin
phi

×
×= . The selection of NDIV, IDF and ODF register content must be done

with the following constraints:
� The VCO frequency range is between 256 and 512 MHz. If you try to make it operate

at lower or larger frequency, the PLL operation could be degraded.
� NDIV values must be ranged between 32 and 96
� IDF can accept any number between 1 and 15
� ODF is coded on 2 bits in order to represent only 4 values: 2, 4, 8 or 16

For example, let’s suppose that the FXOSC is the source generator for the PLL and delivers a
8 MHz clock: clkin = 8 MHz. Let’s suppose that we want to generate a PLL output frequency
equal to 45 MHz: phi = 45 MHz. A possible configuration is: NDIV = 90, IDF = 2, ODF = 8.
With this configuration, the VCO operates at 360 MHz.

BE électronique automobile 5e année ESE

 8

Figure 4 – FMPLL block diagram (MPC5645SRM.pdf - p. 242 – Fig. 8-29)

FMPLL0 proposes also the 1:1 mode. In this configuration, the output frequency is half the

input frequency :
2

clkin
phi = .

The configuration of the PLL operation is controlled by the register FMPLL_CR. The register
fields IDF, ODF and NDIV sets the PLL output frequency. These values must be changed
only when the PLL is not selected as clock source. Setting the bit EN_PLL_SW enables the
progressive clock switching which improves the transition to FMPLL as system clock. The bit
Mode enables the 1:1 mode. Loss of lock and PLL failure are indicated by the bits
UNLOK_ONCE, S_LOCK and PLL_FAIL_FLAG.

The configuration of the frequency modulation is set by the register FMPLL_MR. Three
parameters need to be defined as shown in Fig. 4: the period of the modulant signal (Tmod),
the modulation depth (Mod_depth (%) = 100×md/Fmod) and the type of spreading (center
spread or down spread), where Fmod is modulation frequency and md the amplitude of
frequency excursion. The modulation depth or index is limited to +/-2 % (center spread) ou -
4 % (down spread), the maximum modulation frequency is 100 KHz.

BE électronique automobile 5e année ESE

 9

Figure 5 – Frequency modulation principle in FMPLL block (Bolero512K_RM_Rev7_07_2010.pdf
- p. 87 – Fig. 3-10)

The field MOD_PERIOD sets the modulant period. Its equivalent binary value is equal to:

mod4
_

F

F
PERIODMOD ref

×
= , where Fref is the frequency at the output of the feedback divider

(NDIV). The field INC_STEP sets the modulation index. Its equivalent binary value is equal

to:
() ()

××
××−=

MODPERIOD

depthModNDIV
roundSTEPINC

5100

%_12
_

15

. The type of spread is defined by

the bit SPRD_SEL. If STRB_BYPASS bit is set, the field INC_STEP, MOD_PERIOD and
the bit SPRD_SEL must be changed only when the PLL is in powerdown mode. The
frequency modulation is enabled by setting the bit FM_EN. The FM must be enabled only
when the PLL is active.

After reset, FMPLL is placed in powerdown mode. Its switch on is controlled by software
through the MC_ME module. Its switch on is controlled by software through the MC_ME
module (ME_<mode>_MC register, FMPLLON bit).
The availability of a stable FMPLL clock is indicated by the status bit S_FMPLL in the
register ME_GS of the MC_ME module.

IV - Mode entry module (MC_ME)
This block controls the different modes of the MCU and the transition sequences between the
different modes. The notions of modes and transitions between modes are essential to
configure the MCU correctly and initiate the user mode, which the normal operation mode.

BE électronique automobile 5e année ESE

 10

Refer to chapter 29 – Mode entry module for more details about the MPC5645S’s modes.
The MPC5645S has the same operating modes than the MPC5604B.

1. Presentation of the different modes
The MCU proposes different modes corresponding to different usages (system configuration
and monitoring, user mode, low power modes…) (refer to table 29-1 p 1065). The embedded
software executes only in DRUN, SAFE, TEST and RUN0..RUN3 modes. RESET, DRUN,
SAFE and TEST modes are system modes. They are dedicated to the configuration and the
monitoring of the system. RUN0..RUN3, HALT0, STOP0 and STANDBY0 are user modes.
HALT0, STOP0 and STANDBY0 are low power modes. In the chapter Wakeup Unit, the
procedure to exit these low power modes will be detailed. The configuration of the MCU
mode depends on the requirements in term of energy management and processing power.

� RESET: the application is not active, the chip configuration is initialized. The system
enters in this mode after a reset.

� DRUN: entry mode for the embedded software. It enables the configuration of the

system at the start-up. This is the only mode entry to a user mode. If the embedded
software does not enable a transition between DRUN mode and a user mode, the main
program defined by the user cannot execute. The system enters in this mode after the
end of Reset mode, and after software request from RUN0..RUN3, SAFE, TEST
modes, and a wake up request from STANDBY mode.

� SAFE: the system enters in this mode after the detection of a recoverable error. The

system exits this mode after a reset or DRUN from software.

� TEST: for device self-test. The system enters in this mode from DRUN mode by

software request. The system exits this mode after a reset or by software request to
come back in DRUN mode.

� RUN0 .. RUN3: these are the embedded software modes where most processing

activity is done. 4 RUN modes are provided to enable different power and clock
configuration. The system enters in one of these modes after DRUN by software
request, interrupt event from HALT0, interrupt or wake up event from STOP0. The
system exists one of these modes after reset, entry in SAFE mode after an hardware or
software error, HALT0, STANDBY0 or STOP0 by request.

� STOP: Reduced activity low power mode. The wakeup signals are processed rapidly,

contrary to HALT mode. By default system clock is FIRC, but it can be switched off.
The data and flash memories are powered down but can be activated; the main
regulator is switched on. See chapter Wakeup Unit for more details about the exit of
STOP mode.

� HALT: Reduced activity low power mode. The clock core is disabled. The analog

peripherals can be switched off. The system enters in this mode by software request
from RUN0..RUN3 modes. The systems leaves this mode after a reset, after a
hardware or software failure to go in SAFE mode, or interrupt event to come back in
previous RUN0..RUN3 modes. Contrary to STOP and STANDBY modes, wakeup
signals cannot be used to exit from HALT mode.

BE électronique automobile 5e année ESE

 11

� STANDBY: This is the most low power mode which ensures a reduced leakage

current. Most of the blocks of the MCU are switched off from the power supply to
reduce leakage current. Wake up from this mode is quite long. The system enters in
this mode by software request from DRUN, RUN0..RUN3 modes. The system leaves
this mode after reset, of after wake up event to enter in DRUN mode (see chapter
Wakeup Unit). The wakeup from STANDBY0 mode is longer than from STOP0 mode.
All the pins are in high impedance mode. Only the reset generation mode, power
control unit, wake up unit, 8K RAM, RTC/API, CAN sampler, SIRC, FIRC, FXOSC
are powered.

Figure 6 – Mode entry diagram and possible mode tra nsitions

(Bolero512K_RM_Rev7_07_2010.pdf - p. 144 – Fig. 5-2 4)

2. Mode entry module registers

a. Enabling modes
The Mode Enable Register MER (ou ME) allows enabling or disabling some MCU modes
(except RESET, DRUN, SAFE and RUN0).

BE électronique automobile 5e année ESE

 12

b. Mode configuration
A mode configuration register is associated to each mode to control the connection or
disconnection of some peripherals in the mode, such as the I/O output buffers, internal voltage
regulator, data and code flash memory, PLL, fast external crystal and RC oscillators. It
specifies also the system clock used by the system (PLL, crystal oscillator, fast RC
oscillator…). All these registers have the same structure. The following figure shows the
register structure for RUN0 .. RUN3 mode configuration registers, called ME.RUN[0] to
ME.RUN[3].

c. Peripheral configuration
Up to eight different behaviors can be configured for the peripherals of the MCU in the
different run modes. These 8 behaviors are defined by the Run Peripheral Configuration
Registers 0 to 7 (RUNPC[0] to RUNPC[7]).
Setting a bit associated to a mode to ‘0’ means that, if this configuration is given to a
peripheral, this peripheral will be frozen in with clock gated during this mode. If this bit is set
to ‘1’, the peripheral will be active. For example, let’s suppose that we define one behavior in
RUNPC[0] and we write 0x00000030. If this configuration is associated to one peripheral,
this peripheral will be active only in RUN0 and RUN1 mode. In all other modes, it will be
frozen.

For the 3 non run modes (STANDBY, HALT and STOP), 8 behaviors can also be configures
through the registers Low Power Peripheral Configuration LP_PC[0]to LP_PC[7].

BE électronique automobile 5e année ESE

 13

Once the different possible behaviors have been configured with registers RUNPC[0] to
RUNPC[7], these behaviors can be associated to the 144 peripherals of the MCU. 144
registers called Peripheral Control Registers PCTL[0] to PCTL[143] are associated to each
peripheral. These registers contains 3 fields: the field RUN_CFG defines which one of the 8
behaviors defined in RUNPC[0] to RUNPC[7] will be associated to the peripheral during the
run modes. The field LP_PC defines which one of the 8 behaviors defined in LPPC[0] to
LPPC[7] will be associated to the peripheral during the non run modes. The bit DBG_F sets
the behavior of the peripheral in Debug mode.

The status of the peripherals is given by the registers PS0, PS1, PS2 and PS3.

Remark: one number from 0 to 143 is associated to each peripheral. The following table
(Table 29-2 p 1067) gives the number associated to each peripheral. For example, the number
32 is associated to the ADC0 block, the number 68 to the SIUL module (GPIO). The
configuration of the ADC behavior according to the mode will be defined by register
PCTL[32] and the configuration of the SIUL behavior by PCTL[68].

d. System mode selection and transition
The Mode Control Register MCTL is used to trigger mode change by software. The
TARGET_MODE field defines the target mode to be entered by software request.

The KEY field is a control key to enable the writing in this register. The KEY is 0x5AF0. A
different value is invalid and any writing in the register will be ignored. Actually, two writing

BE électronique automobile 5e année ESE

 14

of the register have to be done to force the device to enter in the mode defined by
TARGET_MODE: first time with the good value of the key, a second time with the inverted
value of the key. For example, suppose that we want the system to exit DRUN mode to enter
RUN0 mode. The TARGET_MODE field must be equal to ‘0100’. Therefore, the two
following lines have to be written in the software:
ME.MCTL.R = 0x40005AF0; /* Enter the target mode and the Key */
ME.MCTL.R = 0x4000A50F; /* Enter the target mode and the inverted Key */

The global mode status of the system is given by the register Glogal Status Register GS. The
field S_CURRENTMODE notifies the current device mode. The bit S_MTRANS notifies if a
mode transition is on-going. It gives also the status of several MCU peripherals.

3. Summary – MCU initialization procedure
The procedure to initialize the MCU is always the same and describes below. This procedure
must be done in DRUN mode.

1. Enables the modes to be used
2. Configure the clock sources for the system clock and auxiliary clocks (see
previous chapter)
3. Configure the modes to be used
4. Configure the peripherals
5. Switch from DRUN mode to a user mode (RUN0,1,2,3)

Remark:
When the MCU is in debug mode, the Software Watchdog (SWT) is disabled (See chapter
Software Watchdog). In nominal operation, the SWT is activated. The SWT must be stopped
or checked regularly to avoid unwanted MCU reset. Refer to chapter Software Watchdog of
this document or chapter 4.2 of the MCU datasheet from more information about the
configuration of the SWT.

V - Wake up Unit (WKPU)
This block manages the events which trigger a transition from low power modes (HALT0,
STOP0 and STANDBY0) to RUN0..3 or DRUN modes. Refer to chapter 49 – Wakeup Unit
for more details.

BE électronique automobile 5e année ESE

 15

The microcontroller exits a low power mode either after a reset assertion, a interrupt request
or a wakeup event (except for Halt0 mode). The wakeup signal can originate from either 24
external sources (specific pads such as CAN or LIN) or internal sources (API and RTC), as
shown in the following table. Four interrupts are associated to these events.

Several registers are dedicated to the configuration and the management of wakeup events.
The register WIFER enabled the different wakeup sources. Writing a ‘1’ in one of the 20
positions of the field IFE[23:0] enables one the external wakeup event (see previous table to
find the number associated to a wakeup source).

The register IRER enables interrupts generation when wakeup events are detected. The
register WISR contains the interrupt flags. The wakeup event is activated either on rising or
falling edge, depending on the configuration of register WIREER and WIFEER.

BE électronique automobile 5e année ESE

 16

VI - GPIO pad configuration (System Integration Un it
Lite)

Refer to Chapter 43 – System Integration Unit Lite of the reference manual
MPC5645SRM.pdf for the configuration of General Purpose I/O (GPIO) pads and the
multiplexing of alternate functions associated to GPIO. The configuration of I/O pads of the
MPC5645S is identical to that of the MPC5604B. So you can refer to the document
presenting the MPC5604B to have the basic configuration of the SIUL.
The 128 GPIO of the MPC5645S can be configured independently through the PCR[0] to
PCR[182] registers (Pad Configuration Register). The association between physical I/O pad
and PCR register can be found in Table 5 - p. 105. For example, PCR[0] is associated to the
pad PA[0]. Be careful with the MPC5645S mounted in a LQFP176 package: not all the I/O
pads are physically connected to the package.
24 I/Os are associated to external interrupt request (EIRQ) inputs: EIRQ[0:23]. The lists of
EIRQ input pads can be found in table 43-1 p 1482 of the reference manual
MPC5645SRM.pdf.

VII - Interrupt configuration
Refer to Chapter 26 – Interrupt Controller (INTC) of the reference manual MPC5645SRM.pdf
for the configuration of priority of the different interrupt source.

1. Presentation of INTC and interrupt vector
The following figure describes how interrupt requests are handling and the position of the
INTC block. In the MCU core (e200z4h), registers called Interrupt Vector Offset Register
(IVOR) forms a branching table which handles the different exceptions which occur during
the MCU operation. IVOR4 is the register used for interrupt handling.

The INTC module of the MPC5645S manages the ISR based on their programmable priorities
and triggers IVOR4 exceptions. The following figure details how an ISR is handled in a mode
called software mode (two ISR handling modes are proposed: hardware and software. Only
software mode is considered in this document).

BE électronique automobile 5e année ESE

 17

The MCU has 171 ISR, refer to Table 26-9 p 942 for the detail about the source of available
ISR):

� 163 ISR are associated to peripherals (hardware (HW) triggered ISR)
� 8 ISR which can be configured by software (software (SW) triggered ISR)

Remark: SW triggered ISR are dedicated to:

� In a multiprocessor context, interruption of a processor activity by another processor
� In a program launched by a high level ISR, if a part of the program has a low level

priority, it is possible to suspend the execution of this part by a software ISR. It
improves the management of dead-lines of operation.

The priority of each ISR can be configured, with a level from 0 (lowest priority) to 15
(highest priority). Most of the HW triggered interrupts are maskable, i.e. it is possible to
inhibit the ISR transmission to the INTS by the peripheral, by setting an interrupt enable bit
(see configuration registers of each peripheral to know how to mask interrupt). Each time an
ISR is launched, a flag bit is set. One flag bit is associated to one ISR source. The flag bits are
in interrupt flag registers associated to the peripherals.

Important: don’t forget to reset flag bit after ISR triggering. The flag indicates to the INTC
that the peripheral sent an ISR. If the flag remains set, no more ISR can be generated. Most of
the time, it is necessary to write a ‘1’ in the flag bit to reset it. This is a particularity of NXP
MCU.

Table 26-9 p 942 gives the interrupt vector table of the MPC5645S. The address of an
interrupt vector is given in the following format:

Base address + Vector number

The vector number starts at 0 (for the software ISR number 0) up to 238 (for ISR launched by
the graphical accelerator).
In order to associate an ISR coming from a peripheral or the software and a program to
process the ISR, an interrupt handler has to be defined. This interrupt handler writes the
address of the interrupt processing program at the interrupt vector address, and manages the
ISR priority. We will see how to deal with interrupt handler with hardware or software ISR in
the MPC5645S.

BE électronique automobile 5e année ESE

 18

2. Enabling maskable interrupt
Maskable interrupt must be enabled at two levels: at local level (i.e. at peripheral level) by a
interrupt enable bit associated to ISR source, and at global level. In order to enable ISR in the
MCU, you must execute this routine in your program:

void enableIrq(void) {
 INTC.CPR.B.PRI = 0; /* Single Core: Lower INTC's current priority */
 asm(" wrteei 1"); /* Enable external interrupts */
}

3. Configuring hardware triggered interrupt
HW triggered interrupt are most of the time maskable interrupt, so the peripheral
configuration must enable ISR and the maskable interrupt must enabled at global level. INTC
is implemented in several files: INTCInterrupt.h, INTCInterrupt.c, Eceptions.h, Exceptions.c.
They contain the routines used to execute the ISR handling procedure. The following function
configure the interrupt handler and the interrupt priority:

INTC_InstallINTCInterruptHandler(My_ISR_program,vec tor_number,priority_level);

My_ISR_program is the name of the program that the programmer wants to launch when the
ISR is triggered by the peripheral. Vector_number is the number of the interrupt vector
associated to the ISR (see Table 26-9 p 942). Priority_level is the level of priority associated
to the ISR and ranges from 0 to 15.
For example, let’s suppose that you design a program that launches the periodic interrupt
timer Timer PIT1. At each time-out of PIT1, you want to trigger an interrupt that launches a
function called My_PIT_ISR_function. The vector number of the ISR associated to PIT1 is 60
(according to Table 26-9 p 942). You want to give a priority level equal to 2 to the PIT1 ISR.
In order to enable the PIT interrupt, you have to proceed as following:

1. Initialize PIT1 and enable interrupt
2. Interrupt handler for the PIT1 ISR: INTC_InstallINTCInterruptHandler
(My_PIT_ISR_function,60,2);
3. Enable maskable interrupt in the MCU: enableIrq();
4. In the function My_PIT_ISR_function, you have to clear the flag associated to PIT1
ISR.

4. Configuring software triggered interrupt
Use the same procedure as HW triggered interrupt to configure SW triggered interrupt.
The only difference relies in the triggering of software interrupt. Hardware interrupt is
triggered by a hardware event (external event, time-out of a timer…). A software interrupt is
triggered by a program request.
The registers SSCIR[i], i = 0..7, of the INTC modules support the setting or the clearing of
software configurable ISR. A couple of 2 bits : SETi/CLRi sets or clear each software ISR.
Writing a ‘1’ to SET set the flag bit CLR to ‘1’.Writing a ‘0’ has no effect. If the CLR bit is
set to ‘1’ it indicates that an ISR is pending, like any other flag bit. The flag CLR is cleared by
writing a ‘1’.

BE électronique automobile 5e année ESE

 19

VIII - Periodic interrupt Timer (PIT)

Refer to Chapter 32 – Periodic Interrupt Timer of the reference manual MPC5645SRM.pdf
for the configuration of timer.
The MCU MPC5645S proposes several timer peripherals dedicated to different uses:

� System Timer Module (STM): it contains a 32 bit running-up counters clocked by the
MCU system clock and four 32 bit compare channels with individual interrupts. This
block is dedicated to the measurement of code execution time (number of clock
cycles).

� Periodic Interrupt Timer (PIT): programmable timers for general purpose time

measurements

� Real Time Clock / Autonomous Periodic Interrupt (RTC / API): the RTC is a free
counter independent of the operation mode (run or low power mode) used to measure
predefined time interval. The RTC contains a 32 bit counter driven either by SIRC,
SWOSC or FIRC internal oscillators (see chapter III of this document, Clock
Generation Description). It also contains a 10 bit compare channel, able to produce
periodic interrupts (API block). The main interest of the API block is to generate
periodic wakeup requests to exit from low power mode, or periodic interrupt requests.

� Software Watchdog Time (SWT): it contains a 32 bit timer used to prevent from

system lock-up when the software is trapped in a loop or a bus transaction failed.

The operation of these peripherals in the MPC5645S is similar to that of the MPC5604B. So
you can refer to the document presenting the MPC5604B to have the basic configuration of
these different timers.

IX - FlexCAN module
Refer to Chapter 20 – FlexCAN of the reference manual MPC5645SRM.pdf for its
configuration. The FlexCAN module is an integrated CAN controller. This the same
peripheral in both MPC5604B and MPC5645S microcontrollers. So you can refer to the
document presenting the MPC5604B for more information about the principles and the
configuration of the FlexCAN module.

BE électronique automobile 5e année ESE

 20

X - DSPI module
Refer to Chapter 10 – Deserial Serial Peripheral Interface of the reference manual
MPC5645SRM.pdf for the configuration of DSPI module. The DSPI module is an integrated
SPI controller. This the same peripheral in both MPC5604B and MPC5645S microcontrollers.
So you can refer to the document presenting the MPC5604B for more information about the
principles and the configuration of the DSPI module.

XI - Display Control Unit (DCU3)
Refer to Chapter 11 – Display Control Unit of the reference manual MPC5645SRM.pdf for
the configuration of DCU module. This peripheral ensures the control of a TFT LCD panel
and the preparation of graphical contents to display stored in internal or external memory. The
DCU3 supports various panel sizes, various configuration of interface signals, different color
encoding formats for memory usage optimization. The DCU can also display real-time video
from an external video source (Parallel Data Interface PDI).
This chapter aims only at describing the main features of this module, its operation principle,
how to configure it to manage a TFT-LCD panel, and the basic operation to construct a
graphical content. This chapter does not explain in detail how to fetch the graphical content to
the different sources, how to decompose a picture in different layers and how to select the best
color encoding format to optimize the memory usage.

1. Principles
Figure 7 describes the functional block diagram of DCU3, from graphic or video contents to
the signal command to the TFT-LCD panel. The characteristics (timing, polarity of signals…)
of the command signal are configured according to the properties of the LCD panel (width,
height, refresh frequency…). The role of the DCU3 is to calculate the relevant graphical
content for each pixel and display it. The different operations are:

� fetch the source graphics from memory using its internal DMA channels (CH1 to
CH4)

� convert the graphic value of each fetched pixel into full quality color format
(RGB888), the source graphic can be encoded in various format or according to a
Color Look-up Table (CLUT)

� calculate the required pixel value by blending the values of up to four separate graphic
layers, with transparency options

� perform a gamma correction on the pixel value if required
� send the pixel value to the TFT LCD display over its data bus
� set flags to indicate end of frame, buffer threshold, and other status changes

BE électronique automobile 5e année ESE

 21

Figure 7 – DCU3 functional block diagram (MPC5645SR M.pdf - p. 337 – Fig. 11-1)

Figure 8 presents the different layers that form the graphical content. The different layers are
configured by the user through the register of the DCU3. The graphical content to display is
composed of three types of layers:

� 16 graphic layers for the creation of the graphical content, which support different
color encoding formats.

� 1 default background layer
� 1 configurable cursor layer with blinking option
� Configurable color look-up tables (CLUT) for user-defined color encoding

These different layers are blended by the DCU3. Various types of blending are proposed and
can be configured through the register of the DCU3. The different blending possibilities will
not be described in this document. Refer to the MPC5645SRM.pdf reference manual for more
information.

Registers Interface

(control descriptors

for each layer)

Layer 0

Layer 1

Layer 2

…..

Layer 14

Layer 15

Background color

Cursor

Graphic

layers

Figure 8 – Decomposition of a graphical content int o layers configurable by the user

(MPC5645SRM.pdf - p. 337 – Fig. 11-1)

Each layer contains the following information, configured by the registers CTRLDESCL1 to
CTRLDESCL7 defined for each layers:

� horizontal and vertical size and position of the graphic
� address of the graphic in memory
� color encoding format and color palettes (if required)

BE électronique automobile 5e année ESE

 22

� type and depth of blending
� range of colors identified for chroma blending
� tile size (a tile is a graphic that is repeated horizontally and vertically to fill completely

a layer)

2. DCU interface signals
Figure 9 presents the external signals of the DCU module. Here, the PDI signals are not
described as they are not used.

Figure 9 – External signals of the DCU (MPC5645SRM. pdf - p. 339 – Fig. 11-2)

The pixel are encoded in a RGB888 format, i.e. 8 bits are used for red, green and blue. The
signals DCU_R[7:0], DCU_G[7:0] and DCU_B[7:0] contains pixel data in parallel mode. The
transfer of pixel data and pixel display are synchronized by the clock DCU_PCLK.
DCU_HSYNC is the horizontal sync signal which indicates by a pulse the beginning of a new
line (the number of pixels per line is given by the width of the LCD panel). DCU_VSYNC is
the vertical sync signal which indicates by a pulse the beginning of a new frame, i.e. all the
lines have been displayed (the number of lines per frame is given by the height of the LCD
panel). The signal DCU_DE means Data Enable and is set to '1' during the display of one line
(between two successive DCU_HSYNC pulses). Figure 10 gives a timing diagram of these
signals.

Figure 10 – Pixel data, PCLK, HYNC and VSYNC timing diagram (MPC5645SRM.pdf - p. 412 –

Fig. 11-63)

BE électronique automobile 5e année ESE

 23

3. Configuration of the interface signals with TFT- LCD
panel

First, the pads associated to the interface signals of the DCU3 have to be configured properly.
The alternative function 1 (for DCU) has to be selected, through the PCR registers (see VI -
SIUL). Don't forget the additional control signals for LCD panel (activation of its power
supply, backlight…).
The DCU generates the control signals PCLK, HSYNC, VSYNC, DE emitted in parallel to
the pixel data. The characteristics of these signals must comply with the properties of the
LCD panel. The following registers are dedicated to the configuration of the interface signals.
The register DISP_SIZE defines the horizontal and vertical pixel resolutions of the LCD panel.
DELTA_Y defines the vertical resolution in pixel number. DELTA_X gives the horizontal
resolution indirectly: the figure given by DELTA_X must be a multiple of 16. For example,
for a 480 x 272 pixels panel, DELTA_Y = 272, while DELTA_X = 30.

The timing parameters of the pixel data transfer must be set properly. They depend on the
width and height of the LCD panel, but also on the frame refreshing frequency (in practice
between 50 and 60 Hz). For example, the pulse emitted on VSYNC is emitted at each end of
frame, while HSYNC at the end of each line of the panel. The first operation is to define the
frequency of the pixel clock. It derives from the auxiliary clock 0 (see III. Clock generation
description). The register DIV_RATIO defines the division ratio between the auxiliary clock
0 and the pixel clock. The DCU3 clock is equal to the auxiliary clock 0. To divide the
auxiliary clock by N, set the register DIV_RATIO to (N-1).
The ratio between the DCU3 clock and the pixel clock must be also selected according to the
number of layer to blend. Blending the pixels from several graphic layers consumes several
DCU3 clock periods. This number increases with the number of layers to blend (blend stack
depth). For example:

� for one or two pixel blending, the minimum DCU3 clock is the same as the pixel clock
� for three pixel blending, the minimum DCU3 clock is twice the pixel clock
� for four pixel blending, the minimum DCU3 clock is three times the pixel clock

The timing characteristics of the HSYNC signal are controlled with the register
HSYN_PARA (see Figure 10 for more details about the timing parameters of HSYNC). The
PW_H sets the duration of the HSYNC pulse in number of pixel clock periods. The fields
BP_H and FP_H define the back-porch pulse width and front-porch pulse width respectively,
i.e. the time between the HSYNC pulse and both edges of DE signal. They are given in pixel
clock periods.

BE électronique automobile 5e année ESE

 24

The timing characteristics of the VSYNC signal are controlled with the register
VSYN_PARA (see Figure 10 for more details about the timing parameters of VSYNC). The
PW_V sets the duration of the VSYNC pulse in number of horizontal line cycles. The fields
BP_V and FP_V define the back-porch pulse width and front-porch pulse width respectively,
i.e. the time between the VSYNC pulse and both edges of DE signal. They are given in
number of horizontal line cycles.

The register SYN_POL defines the polarity of the interface signal.

Remark: Bypassing the Timing Controller (TCON)

The microcontroller embeds a Timing Controller (TCON) for raw TFT-LCD panels which
embeds no TCON. In this situation, the TCON provides directly panel the control signal in
RSDS signaling format (Reduced Swing Differential Signal). The TFT-LCD panel used in the
instrument cluster of our lab integrates a TCON, so the TCON peripheral of the MPC5645S is
useless. However, it is necessary to bypass it, otherwise it will modify the command signal
provided by the DCU (HSYN, VSYN and DE are altered). To bypass the TCON, the
following procedure must be set:

� disable the TCON by writing a '0' to the bit TCON_EN of the register CTRL1 of the
TCON peripheral

� bypass the TCON by writing a '1' to the bit TCON_BYPASS of the register CTRL1 of
the TCON peripheral

4. Configuration of the graphical layers
The DCU module proposes to construct a graphic from a maximum of 16 layers that can be
blended together. Actually, it is only possible to blend 4 superimposed layers. If more than 4
layers are superimposed, only the 4 layers with the highest priority are blended, the others are
ignored (Layer0 has the highest priority). Obviously, all the graphical layers are placed above
the background of the TFT-LCD panel.

BE électronique automobile 5e année ESE

 25

For each graphical layers, 7 registers noted CTRLDESCL1 to CTRLDESCL7 define their
properties. Below, a brief description of some of them is proposed. CTRLDESCL1 defines
the width and height of the layer in number of pixels. If the width or height of the layer
exceeds the actual size of the LCD panel (given by the register DISP_SIZE), the pixels
outside the screen will be ignored. As explained in 11.4.4.3 in the MPC5645S reference
manual, HEIGHT field can take any values, but there is restriction for WIDTH field
depending on the data format of the graphic specified by the layer. This field must always be
an integer multiple of the number of pixels that are represented by a 32-bit word except in the
special case of 1 bit per pixel where the multiple is 16. Figure 11 gives the WIDTH multiple
values according to the encoding format. By default, if RGBA8888 is used (8 bits for red,
green, blue and transparency alpha), 32 bits are used to encode one pixel, so the field WIDTH
gives directly the width of the layer in pixel number.

Remark: the transparency is encoded according to a value noted Alpha. If it is coded on 8
bits, this value varies between 0 (fully transparent) to 255 (fully opaque).

Figure 11 – WIDTH multiple values according to the encoding format (MPC5645SRM.pdf - p. 418

– Table 11-59)

CTRLDESCL2 defines the horizontal and vertical position of the origin of the layer in
number of pixels. The origin is the top-left point of the layer. All the pixels outside the screen
are ignored.

BE électronique automobile 5e année ESE

 26

CTRLDESCL3 gives the memory address of the beginning of the layer data (first pixel). Data
can be stored in internal Flash, internal SRAM, internal Graphic SRAM, or an external Flash
memory, through the serial Quad SPI interface. The memory map of the microcontroller can
be found in Table 2-1 p. 87 of the MPC5645S reference manual. Be careful, the memory
address of the beginning of the layer must be a multiple of 64 (64 bit aligned).

CTRLDESCL4 gives various graphic options for each layer. EN bit enables the layer. This bit
must be set to '1' to be displayed and blended with the other layers. Tile mode is enabled by
setting the bit TILE_EN. The Tile data can be either in memory or in CLUT, according to the
bit DATA_SEL. The field TRANS can defined a global transparency level (alpha value) for
the layer. The field BPP gives the encoding format in terms of bits per pixel (bpp). For
example, with BPP = '0110', the encoding format is RGBA8888. LUOFFS field defines the
offset of CLUT or Tile associated to the layer in the CLUT/TILE RAM (see Table 11-2 p 340
for the memory address). The field AB defines the Alpha blending, i.e how the transparency
levels of superimposed graphical layers are managed.

CTRLDESCL5 and CTRLDESC6 deal with Chroma keying, but they are not detailed in this
document. CTRLDESCL7 defines the horizontal and vertical size of the Tiles that compose
the graphic layer. TILE_VER_SIZE gives the height in pixels, TILE_HOR_SIZE gives the
width in multiples of 16 pixels.

5. Configuration of the Background and cursor layer s
The background color of the TFT-LCD panel is set by the register BGND. Three fields of 8
bits defines its color in RGB888 format. Obviously, no transparency is associated to the
background.

BE électronique automobile 5e année ESE

 27

A hardware cursor with blinking option can be superimposed on all the other graphic layers.
Its properties are configured with registers CTRLDESCCURSOR1 to CTRLDESCCURSOR4.
The graphic associated to the cursor is defined by the user and stored in a given area of the
memory: the cursor RAM (see Table 11-2 p 340 for the cursor RAM address). The register
CTRLDESCCURSOR1 defines the size of the rectangular surface occupied by the cursor.
Two fields (HEIGHT and WIDTH) gives the height and width of the cursor in pixel numbers.
However, there are some restrictions on the size: the height is limited to 256 pixels and the
total number of pixel must not exceed the number of bits of the cursor RAM (its size is
limited to 8192 bits). CTRLDESCCURSOR2 configures the horizontal and vertical positions
of the cursor. CTRLDESCCURSOR3 enables the cursor and sets its color.
CTRLDESCCURSOR4 enables the blinking option and sets the period of blinking in term of
number of frame periods.

6. Color Look-Up Table (CLUT)
The RAM memory of the microcontroller embeds a short portion dedicated to the definition
of a color look-up table (CLUT) (see Table 11-2 p 340 for the its address). 32-bit word coding
colors in ARGB8888 format (8 least significant bit for the transparency, followed by 8 bit for
the red, 8 bit for the green, and 8 bit for the blue) can be defined and stored by the user. These
colors form a table that can be used for the rendering of each graphical layers.
The main interest of the CLUT is to reduce the required size of data stored in memory to
encode image. All the picture display on the TFT screen are in RGB888 format. However, it
is not necessary to encode data with such a format when only a small amount of colors are
used in the picture. The image can be encoded with a smaller amount of bit, which codes an
entry of the CLUT, where a color in ARGB8888 format is stored. For each image, the used
colors are organized in the CLUT from an offset address, which is defined in the field
LUOFFS of CTRLDESC4.

7. Configuration of the operating mode
The DCU3 supports several operating modes, which are activated by the field DCU_MODE
of the register DCU_MODE:

� by default, the DCU is in Off mode
� the normal mode, where the different configured layers are blended and displayed
� the color bar mode, which is a test mode (Figure 12)

BE électronique automobile 5e année ESE

 28

This register is also used to configure several special modes, the PDI operating mode. The bit
RASTER_EN must be set to activate the scanning of pixel data, the transfer of pixel data to
LCD panel with the other interface signals (PCLK, HSYNC, VSYNC, DE).

Figure 12 – Example of display in Color bar mode

8. Timing management
Changes in the layer configuration can be done at any time by the CPU, independently of the
data fetch from memory. In some case, it can produce an incoherent display on the panel. The
configuration defined one HSYNC before the end of the vertical blanking period is the
configuration used by the DCU3 for the panel refresh phase. Therefore, the DCU3
configuration is completely open during the vertical blanking period. In contrary, control
descriptors and some other registers may also be programmed at any time.
To prevent this situation, the DUC3 proposes five timing control flags in order to manage the
changes control descriptors, CLUT, tile memory or source graphics. These flags are given in
the register INT_STATUS.

BE électronique automobile 5e année ESE

 29

The VS_BLANK and LS_BF_VS flags give indication of the start of the vertical blanking
period. The VS_BLANK flag is set at the beginning of the vertical blanking period. The
LS_BF_VS flag is set a given number of horizontal lines before the start of the vertical
blanking period; the given number of lines is defined by the LS_BF_VS bit field in the
THRESHOLD register.
The PROG_END flag indicates that the DCU3 has locked the contents of its configuration
registers for the new panel refresh period. No further changes are accepted to the DCU3
configuration after this flag is set (until the next vertical blanking period).
The DMA_TRANS_FINISH flag indicates that the DCU3 has completed fetching all data
from memory in the current panel refresh cycle. This normally precedes the vertical blanking
period and indicates that it is possible to change the contents of a memory that contains
graphics used by the DCU3. The VSYNC flag indicates that the DCU3 has begun the next
panel refresh period.

The DCU3 uses input and output FIFOs to store incoming data from DMA and data to be
displayed. The 4 input FIFOs are not accessible for the user, so that it can become full or
empty. However, high and low thresholds can be defined to detect if the FIFOs are nearly full
or empty. These thresholds are defined by the register THRESHOLD_INPUT_BUF_1/2. Four
couples of flags are associated to each input FIFO to indicate if the FIFO has reached its
upper or lower threshold : Pn_FIFO_HI_FLAG and Pn_FIFO_LO_FLAG, with n = 1, 2, 3 or
4.

9. Error detection and interrupt generation
The DCU3 asserts error flags when:

� errors are detected in its configuration
� the user attempts to modify the configuration at an invalid point in the panel refresh

period
� the DCU3 is unable to access the required source data.

An interrupt is triggered if enabled in the corresponding mask register (INT_MASK register).
The flags are registered in PARR_ERR_STATUS and INT_STATUS registers. The first

BE électronique automobile 5e année ESE

 30

register collects the errors due to the DCU3 configuration and its graphical layers. The second
register indicates errors when the DCU3 is unable to access its required source data.

Four interrupt are associated to the DCU3, with the following ISR number:

Interrupt
lines

184. Timing based
interrupts

185. Functional
interrupts

186. Parameter
error interrupts

187. PDI related
interrupt

Associated
flags

VSYNC
LS_BF_VS
VS_BLANK
PROG_END
DMA_TRANS_FI
NISH

UNDRUN
CRC_READY
CRC_OVERFLOW
P1_FIFO_HI_FLAG
P1_FIFO_LO_FLAG
P2_FIFO_LO_FLAG
P2_FIFO_HI_FLAG
P3_FIFO_HI_FLAG
P3_FIFO_LOW_FLAG
P4_FIFO_HI_FLAG
P4_FIFO_LOW_FLAG
IPM_ERROR

Layer Error
Signature
Calculator Error
Display Error
HWC_error
RLE error

Not described
here

10. Image storage and encoding

Several memory spaces are available to store the pixel contents of images to be displayed.
They can be stored either in on-chip Flash memory, on-chip RAM memory or external Flash
memory (the MPC5645S supports interface with external QuadSPI Flash memory). The
address of the location of these different memories can be found in Table 2-1 p 87. When you
write data in memory, ensure that you write at a correct location ! Any write in an
incorrect location (e.g. in Code Flash or restricted area may lead to a wrong operation of the
microcontroller. The DCU includes also some RAM blocks to store some graphical elements,
such as the cursor and the CLUT. Table 11-2 p 340 provides the memory location of the
hardware cursor and the CLUT. The base address of DCU registers can be found in Table 2-1
p. 87 and is 0xFFE5C000.

BE électronique automobile 5e année ESE

 31

The way the image will be displayed depends on the data encoding of the octets stored in
memory and passed to the DCU. This data encoding is defined by the user. As explained in
part XI.4, the DCU supports various data encoding. The use of a data format involves various
constraints in the memory management. Read carefully the datasheet to ensure that these
constraints are observed. In p. 420 of the datasheet, from Table 11-60 to Table 11-70, the
storage format for each data encoding is provided. As example, the following figures present
the storage format for data in BGRA8888 and & bit per pixel encoding. In BGRA format,
each pixel is coded by a 32 bit word stored in memory (e.g. B0R0G0A0), where the most
significant octet codes the blue component of the pixel and the least significant octet codes the
transparency (alpha component).
In 1 bpp format or monochrome image format, a 32-bit word stores the state of 32 pixels. The
two colors that the pixel can take are given by two entries in a color palette stored in the
CLUT, as defined by CTRLDESCL4 register of the considered graphical layer. As described
by the figure below (Table 11-70), a 32-bit word describes the status of 32 adjacent pixels
organized in a row, where the most significant octet [0:7] describes the 8 leftmost pixels
(pixel 0 to pixel 7), while the least significant octet [24:31] describes the 8 rightmost pixels
(pixel 24 to pixel 31). However, in each octet, the LSB describes the rightmost pixel while the
MSB describes the rightmost pixel.

11. General procedure to display an image

The following steps describe the typical initialization procedure of the DCU3:

1. After a reset configure the DCU3 peripheral to be active using the mode entry
module and configure the DCU3 clock source (auxiliary clock 0) in the MC_CGM
2. If using a panel with an integrated TCON module, disable the TCON signals by
setting the TCON_BYPASS bit in the TCON CTRL1 register. Due to the
configuration of the TCON module, the DCU3 pixel clock signal will be output as
soon as it is selected by the SIUL PCR. This is independent of the DCU3 operating
mode.
3. Configure the output ports in the SIUL as required.
4. Configure the timing registers to match the TFT LCD panel requirements
5. Set the background color
6. If necessary, load the initial tile or palette colors into the CLUT/Tile memory
7. Configure the control descriptors for the layers and cursor that are to be used
initially

BE électronique automobile 5e année ESE

 32

8. Enable the DCU3 in the appropriate mode (DCU_MODE and RASTER_EN bit
fields).

Before enabling the display, the graphical contents have to be stored in on-chip or off-chip
memory. The role of the program that manages a LCD screen consists in pointing out the
memory address of each graphical layer (through CTRLDESC3 register), modifying the color,
the appearance, the position of each graphical layer (through the CTRLDESCX register), or
transforming the graphical content stored in memory. Ensure that the graphical content is
ready before displaying it.

XII - Stepper Motor Controller (SMC)
Refer to Chapter 41 – Stepper motor controller (SMC) of the reference manual
MPC5645SRM.pdf for the configuration of DCU module. You can also refer to the NXP
Application note AN4037 - Driving a Stepper Motor using the MPC56xxS SMC Module for
more precise information about control of stepper motors with SMC.

The SMC of the microcontrollers used in this lab is not functional, so it is recommended
to command the stepper motors of instrument gauges directly with the I/O pads and the
PIT timer for synchronization.

The SMC block is a PWM motor controller suitable for driving small stepper motors, which
are equivalent to inductive coil. The microcontroller can control up to 4 motors. 16 external
pins are associated to the SMC and 8 PWM channels. Each stepper motor is made of 2 coils
and has two differential terminals called Plus (P) and Minus (M). The microcontroller pins
and PWM channels are resumed in the following table. A H-bridge is associated to each
PWM channel pair in order to change the polarity of the current in the coil of the stepper
motor. PWM output on M0C0M results in a positive current flow through coil 0 when
M0C0P is driven to a logic high state. PWM output on M0C1M results in a positive current
flow through coil 1 when M0C1P is driven to a logic high state

