

Formation HFSS Simulation de boucle magnétique

Alexandre Boyer

Mai 2020

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

- > Prise en main de l'environnement ANSYS Electronics Desktop (V16) HFSS
- > Création d'un projet *from scratch*
- > Flot de modélisation et post-processing typique
- > Utilisation des opérations logiques pour construire une géométrie
- > Validation des résultats de simulation sur un cas simple
- > Export des résultats (fichier Touchstone et circuit équivalent SPICE)
- Lien avec les autres outils de ANSYS Electronics Desktop (Nexxim Circuit Simulator) : modèle statique (N port) et lien dynamique

- > Une boucle circulaire de rayon Rloop = 5 mm, constitué d'un fil de rayon Rwire = 0.5 mm
- > Le fil est en cuivre.
- > Il est excité par un générateur de tension interne de 20 V et d'impédance de sortie 50 Ω

Premières options à régler

> Tools > Options > General Options :

FSS Options X
General
Solution Type Options Default solution type: Driven Terminal
Material Options
Include ferrite materials.
Solve Inside threshold: 100000 Siemens/m 💌
Assignment Options Image: Use Wizards for data input when creating new boundaries. Image: Duplicate boundaries/mesh operations with geometry. Image: Visualize boundaries on geometry. Image: Auto-assign terminals on ports. Post Processing Options
Default matrix sort order: Ascending alphanumeric
 Save before solving. Save Optimetrics field solutions.
Apply variation deletions immediately.

OK

Annuler

Premières options à régler

> Tools > Options > 3D Modeler Options :

LAAS

CNRS

> Dans le volet Drawing, cochez « Edit Properties of New Primitives »

Clone	
Clone too	l objects before uniting
Clone too	l objects before subtracting
Clone too	l objects before intersecting
Clone too	l objects before imprinting
Clone too	l objects before projecting
Coordinate S	lystem
Automatio	cally switch to face coordinate system
Polyline	
Automatio	cally cover closed polylines
Model Edit -	
Delete in	valid objects created during split operation
Automatio	cally imprint wrapped sheets
History Tree	
Select las	st command on object/submodel select
Expand h	istory tree on object/submodel select
UDM/UDP	geometry computation for optimetrics analysis
Engine c	omputes the geometry
C Deskton	computes the geometry
Deartop	THE CONDITION OF A DESCRIPTION

×

Création du projet / design HFSS

- > File > New → création d'un nouveau projet
- > Renommer en MagneticLoop1

AAS

- Insertion d'un design HFSS, qu'on nommera MagneticLoop.
- -
- > File > Save as → sauvegarde du projet
- Réglage du type de solution (Tools > Options > General Options)
- > Réglage des unités (en mm) : Modeler > Units

- > Créer les variables suivantes
- > HFSS > Design properties > bouton Add ou clic droit sur le nom du projet > Design properties

Name	Value	Unit	Evaluated Value	Туре	Description	Read-only	Hidden
Rloop	5	mm	5mm	Design			
Rwire	0.5	mm	0.5mm	Design			
Wairbox	75	mm	75mm	Design			
Vgene	10	V	10V	Design			

- La géométrie peut être créer à l'aide d'un tore. >
- Clic sur **Draw torus**(dispo aussi dans **Draw > Draw box**) >

Dimensions et définition du matériau : >

LAAS CNRS

	Value	Unit	Evaluated Value	Description	Name	Value	Unit	Evaluated Value	Description
_	Create Torus				Name	Loop			
Sys	Global		-		Material	"copper"		"copper"	
ition	0.0.0	mm	Omm Omm Omm		Solve Inside				
	7				Orientation	Global			
a di va	2 During		0 Emm		Model	v			
adius	Rwire R		o.onim		Display Wirefra.				
adius	Rioop		5mm		Color				
					Transport	0.5	1		

5

10 (mm

- > Il est nécessaire de créer une ouverture dans la boucle pour placer un port d'alimentation.
- Commençons par changer le système de coordonnées :
 View > Grid System
- > Passage en coordonnées polaires

C Carte	esian 🕫 Polar I Line	
C Dot	Line	
adjust density	to: 30 pixels	
an	Polar	
1	dR: 1	
1	dThete: 1	
1	difficial principal difficial diffic	
	adjust density an 1 1 1	adjust density to: 30 pixels an an Polar 1 dR: 1 dTheta:

- > Dessiner une ligne délimitant une petite portion de la boucle (**Draw Line**)
- > Un objet polyline est créé définissant une surface fermée d'épaisseur nulle.

Définition du modèle géométrique

 Sélectionner l'objet polyline et lui attribuer une épaisseur supérieure à 2 * Rwire : Modeler > Surface > Thicken Sheet.

Thicken Shee	:t		×
Thickness:	2*Rwire	•	•
✓ Both Side	es		
		1 Veril	1

- > On sélectionne l'objet boucle et l'objet polyline.
- > Modeler > Boolean > Substract → on supprime la portion de boucle délimitée par polyline.

- Pour placer le lumped port, on doit créer une surface placée à l'intérieur de l'ouverture.
- Créer un cercle de rayon Rloop+Rwire (Draw Circle), puis créer un second cercle de rayon Rloop-Rwire. Les 2 cercles sont centrées en (0,0,0).
- Il est possible de copier/coller le premier cercle puis de modifier ses propriétés.
- > Modeler > Boolean > Substract → on conserve un anneau, délimité par les 2 cercles.

Blank Parts	-	Tool Parts
Circle1	->	Circle2
	<	

AAS

CNRS

- > A l'intérieur de l'objet Loop, on récupère l'objet polyline et on le copie/colle.
- On réalise l'intersection entre l'anneau précédent et l'objet polyline : Modeler > Boolean > Intersect

LAAS			
CNRS	Création	des	excitations

- Sélectionnez la surface à l'intérieur de l'ouverture (Edit > Select > > Faces), clic droit : Assign Excitation > Lumped port
- Attribuez numéro 1 >

l

LAAS / Labo

Ajout d'un terminal : HFSS > Assign Excitation > Terminal >

Reference Conductors for Terminals				
Port Name: 1	Terminal		×	
Use conductor name Use port object name NOTE: Multiple reference conductors touching a port must all be connected in the plane of the port.	Name: Polyline2_1	.		
Conductor Use as Reference	Resistance:	50 ohm 💌		Polyline2_T1
		Use Defaults		
	ОК	Cancel		
OK Cancel	lu CNRS			1

Création des excitations

- > Réglage de la tension du générateur de tension : HFSS > Field > Edit Sources
- Vgene correspond à la tension aux bornes du générateur lorsqu'il est chargé par 50 Ω, donc la tension interne est égale à 2xVgene.

Source	Type	Magnitude	Unit	Phase	Uni
Port_T1	Port	Vgene		0	deg

Création des conditions aux limites

- > Tout l'espace autour du modèle est considéré par défaut comme du Perfect Electric Conductor (PEC) → il faut le changer si on veut créer un volume ouvert.
- > Définition de l'**Air Box.**
- <u>Dimensions recommandées :</u> compromis entre précision et temps de calcul. Une distance d'au moins λ/4 entre le modèle et le bord rayonnant.
- > Dessin d'une boite autour du design (**Drawing Plane** \rightarrow **XY et Draw Box**)

Name	Value	Unit	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys.	. Global			
Position	-Wairbox/2 ,-Wairbox/2 ,-Wairbox/2		-37.5mm , -37.5mm , -37.5mm	
XSize	Wairbox		75mm	
YSize	Wairbox		75mm	
ZSize	Wairbox		75mm	

Création des conditions aux limites

- > Création de limites de type « Radiation boundary » au-dessus du substrat \rightarrow espace ouvert.
- Sélection des faces par : Edit > Select > By name(S)

Création des conditions aux limites

Radiation Boundary × Clic droit > Assign Boundary > Radiation Name: Rad1 Radiating Only C Incident Field C Enforced E Field C Enforced H Field Model exterior as HFSS-IE domain Reference for FSS ✓ Include for near/far field calculation (Not appropriate when source is on an internal surface) OK Cancel

>

- Pour une analyse rapide (temps de simulation court, de l'ordre de 3 min) : >
- **HFSS > Analysis setup > Add solution setup** : on définit la fréquence à laquelle la > structure sera maillée et le processus de calcul adaptatif sera effectué (nom Setup1) Driven Solution Setup

Driven Solution Setup × General Options Advanced Expression Cache Derivatives Defaults Setup Name: Setup1	General Options Advanced Expression Cache Derivatives Defaults
General Options Advanced Expression Cache Derivatives Defaults Setup Name: Setup1	Initial Mesh Options
Image: Solution Frequency Adaptive Solutions Maximum Number of Passes 10 0.02 Image: Maximum Delta S 0.02 Image: Use Matrix Convergence Image: Defaults	Do Lambda Refinement Lambda Target: 0.6667 Use Default Value Use Free Space Lambda Adaptive Options Maximum Refinement Per Pass: 30 Maximum Refinement: 1000000 Minimum Number of Passes: 1 Solution Options Order of Basis Functions: Mixed Order © Direct Solver © Iterative Solver
	Relative Residual: 1e-006 C Domain Decomposition Relative Residual: 0.0001
HPC and Analysis Options	Use Defaults

LAAS-CNRS

Х

- > Pour une analyse plus fine (temps de simulation long, de l'ordre de 30 min.) :
- > HFSS > Analysis setup > Add solution setup : on définit la fréquence à laquelle la structure sera maillée et le processus de calcul adaptatif sera effectué (nom Setup1)

riven Solution Setup		×
General Options Advanced Expres	sion Cache Derivatives Defaults	
Setup Name: Setup 1		
🔽 Enabled	Solve Ports Only	
Solution Frequency	GHz 💌	
Adaptive Solutions		
Maximum Number of Passes	10	
Maximum Delta S	0.02	
O Use Matrix Convergence	Set Magnitude and Phase	
Use E	Defaults	
	HPC and Analysis Options	
		_

LAAS-CNRS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

OK

Annuler

nitial Mesh Options	
Do Lambda Refinement	
Lambda Target: 0.1	Use Default Value
Use Free Space Lambda	
Adaptive Options	
Maximum Refinement Per Pass:	30 %
Maximum Refinement:	1000000
Minimum Number of Passes:	1
Minimum Converged Passes:	
Solution Options	
Order of Basis Functions:	Mixed Order
Direct Solver	
C Iterative Solver	
Relative Residual:	1e-006
C Domain Decomposition	
Deletive Desiduel	0.0001

×

- > HFSS > Analysis setup > Add Frequency sweep: on définit la plage de fréquence sur laquelle on calcule les solutions (le maillage n'est pas raffiné à ces fréquences)
- > On sélectionne Setup1.

Pour conserver les champs
(E, H, J) à l'intérieur du
volume de calcul !!!

-	National and	Chant	-1	1	-
1 Linea	r Step	0 1GHz		Sten size	0.1GHz
Add	Above	Add Below	Delet	e Selection	Preview

- > HFSS > Validation check aux limites) et de l'analyse.
- : vérification du modèle (géométrie, excitation, conditions

Warning : pour avertir que le calcul à l'intérieur des conducteur requiert un maillage fin !

Lancement de la simulation

> HFSS > Analyze All

- Temps de calcul dépendant du nombre de mailles, du nombre de fréquence, du nombre de passes pour converger
- Toujours commencer par un nombre réduit de fréquences et de passes pour évaluer le temps de calcul requis pour le modèle et la simulation finale
- > Avancement visible dans la fenêtre **Progress**.
- > Si la simulation se termine correctement :

Analyse des résultats

> HFSS > Results > Solution data

> Visualisation du temps de simulation, de la convergence, du maillage ...

Profile Convergence Matrix Data Mesh Statistics

AAS

Task	Real Time	CPU Time	Memory	Information
Matrix Assembly	00:00:07	00:00:07	340 M	Disk = 0 KBytes, 78791 tetrahedra , 1: 22 triangles
Solver DCS1	00:03:13	00:03:12	4.13 G	Disk = 0 KBytes, matrix size 357831 , matrix bandwidth 2
Field Recovery	00:00:01	00:00:01	4.13 G	Disk = 648 KBytes, 1 excitations , Average Order 0.4881
Frequency: 0.1 GHz				Full Solution
Simulation Setup	00:00:04	00:00:04	133 M	Disk = 0 KBytes
Matrix Assembly	00:00:07	00:00:07	339 M	Disk = 0 KBytes, 78791 tetrahedra , 1: 22 triangles
Solver DCS1	00:03:01	00:03:01	4.13 G	Disk = 0 KBytes, matrix size 357831 , matrix bandwidth 2
Field Recovery	00:00:01	00:00:01	4.13 G	Disk = 648 KBytes, 1 excitations , Average Order 0.4881
Solution Process				Elapsed time : 00:31:41 , Hfss ComEngine Memory : 43 M
Total	00:31:01	00:31:00		Time: 05/21/2020 11:26:57, Status: Normal Completion
			252	-
<				>

ofile	Convergence	Matrix Data	Mesh Statistics					
Tot	al number of e	lements: 78791						
	It Total	kaller and and have	ka I	DMC - J - L	11. 1 1	1.4	1.1	OLID /
	Num Lets	Min edge len	Max edge len	RMS edge len	Min tet vol	Max tet vol	Mean tet v	Std Devn (v.
Box1	73320	0.0975452	7.39656	4.43936	3.5069e-00	Max tet vol 30.1108	Mean tet v 5.75356	5.09937

Calcul de l'inductance de la boucle

> Théoriquement, l'inductance d'une boucle circulaire, de rayon RI, formé d'un fil de rayon Rw est donnée par :

$$L = \mu_0 R_l ln \left(\frac{8R_l}{R_w} - 2 \right)$$
 Dans note cas : L_{theorique} = 15 nH

> HFSS > Results > Create Terminal Solution Data Report > Rectangular Plot → Z parameters

Calcul de la résistance de la boucle

> Théoriquement, en basse fréquence (sans effet de peau) :

- > Tracé du courant surfacique : **HFSS > Fields > Plot Field > J > Mag_Jsurf**
- > L'effet de proximité sur la distribution de la densité de courant est clairement visible.

> Théoriquement :

.AAS CNRS

$$V(\omega) = \frac{V_{gene}}{R_{gene} + jL_{boucle}\omega}$$

A 100 MHz : ||| = 393 mA A 1000 MHz : ||| = 188 mA

- > Deux méthodes pour mesurer le courant sur le modèle :
 - On mesure la densité de courant traversant la section du conducteur

$$I = \iint_{Se} \qquad \overrightarrow{J_{vol}}. \, \overrightarrow{dS}$$

 On mesure le champ magnétique le long d'un contour C fermé placé autour du conducteur

$$I = \int_C \vec{H} d\vec{l}$$

- > Méthode 1 : intégration du courant à travers la section du conducteur
- > On créé une surface à l'intérieur du conducteur (Draw Circle)

- > Calculatrice de champ : **HFSS > Fields > Calculator**
- > Opération (attention, il faut faire l'intégration sur la partie réelle puis sur la partie imaginaire) :
 - Quantity > Jvol
 - Complex > Real
 - Geometry > Surface > ProbeCurrent
 - Normal
 - •

AAS CNRS

- Complex > CmplxReal
- Quantity > Jvol
- Complex > Imag
- Geometry > Surface > Probe Current
- Normal
- Complex > CmplxImag
- +
- Add → enregistré sous LoopCurrent

Name	/		Solution:	Setup1 : LastAdaptive	е
Surface_Force_Density	 <surfaceforcel< li=""> </surfaceforcel<>	Delete	Field Tupe:	Fields	
LoopCurrent2	+(CmplxR(Integ	00000	т ісій турс.	Tields	
LoopCurrent3	+(CmplxR(Integ	Clear All	Freq	1GHz	
Hmod	CmplxMag(<hx< td=""><td></td><td>Phase</td><td>Odeg</td><td></td></hx<>		Phase	Odeg	
<	>				
Add	Сору t	o stack	1		- 10
ibrary: Load From	Save	е То	Ch	ange Variable Values	
Push Pop	RIUp	RIDn	Exch	Clear Undo	1
Push Pop Input		RIDn Scalar	Exch Vecto	Clear Undo r Output	
Push Pop Input Quantity ±	RIUp General	RIDn Scalar Vec? ★	Exch Vecto Scal?	Clear Undo or Output Yalue	
Push Pop Input Quantity ±	General +	RIDn Scalar Vec? ★ 1/x	Exch Vecto Scal? Matl.	Clear Undo or Output ★ Value Eval	
Push Pop Input Quantity ± Geometry Constant ±	General + ×	RIDn Scalar Vec? ★ 1/x Pow	Exch Vecto Scal? Mati.	Clear Undo r Output Value Eval g Write	
Push Pop Input Quantity ± Geometry Constant ± Number	BIUp General + - × /	RIDn Scalar Vec? ★ 1/x Pow	Exch Vector Scal? Matt. Dot	Clear Undo or Output Value 	
Push Pop Input Quantity ± Geometry Constant ± Number Function	RIUp General + - × / Neg	RIDn Scalar Vec? ★ 1/x Pow Trig ★	Exch Vector Scal? Mati. Dot	Clear Undo or Output Value Eval write s	
Push Pop Input Quantity ± [Geometry Constant ±] Number Function Geom Settings	RIUp General + - × / Neg Abs	RIDn Scalar Vec? ± 1/x Pow √ Trig ± d/d? ±	Exch Vector Scal? Matl. Dot Cros	Clear Undo vr Output Value Eval vrite s g	
Push Pop Input Quantity ± C Geometry Constant ± Number Function Geom Settings	RIUp General + - / Neg Abs Smooth	RIDn Scalar Vec? 1/x Pow √ Trig d/d?	Exch Vector Scal? Matt. Dot Cros	Clear Undo r Output Value Eval Write s I	
Push Pop Input Quantity ± Geometry Constant ± Number Function Geom Settings	BIUp General + - - - - - - - - - - - - - - - - - -	RIDn Scalar Vec? 1/x Pow √ Trig d/d? ✓ Min	Exch Vector Scal? Mag Dot Cros Divy Cur Tange	Clear Undo or Output Value Eval Write S I ent	
Push Pop Input Quantity	RIUp General + - / Neg Abs Smooth Complex ± Domain	RIDn Scalar Vec? 1/x Pow √ Trig d/d? ✓ Min Max	Exch Vector Scal? Matl. Dot Cros Divg Cur Tange	Clear Undo r Output ▲ Value Eval al	
Push Pop Input Quantity $ easily (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2$	RIUp General + - × / Neg Abs Smooth Complex ★ Domain	RIDn Scalar Vec? 1/x Pow √ Trig d/d? ✓ Min Max	Exch Vector Scal? Matl. Dot Cros Divg Cur Tange Norm Unit Vec	Clear Undo or Output Value Eval g Write s g l ent al	
Push Pop Input	RIUp General + · × / Neg Abs Smooth Complex ★ Domain	RIDn Scalar Vec? 1/x Pow Image: Trig d/d? Imax Max Image: Ln	Exch Vector Scal? Mat Dot Cros Divy Cur Tange Norm Unit Vec X Form	Clear Undo or Output Value Eval Write S I ent al L L L L L L L L L L L L L	

 \times

- > Méthode 2 : intégration du champ magnétique sur un contour fermé autour du conducteur
- Au préalable, décocher l'option « Automatically cover closed polylines » dans Tools > Options > 3D Modeler Options
- > Dessiner un cercle autour du conducteur quelque part sur la boucle. Celui-ci doit entourer complètement le conducteur, mais ne doit pas être trop large.

.AAS CNRS

- > Calculatrice de champ : **HFSS > Fields > Calculator**
- > Opération (attention, il faut faire l'intégration sur la partie réelle puis sur la partie imaginaire) : Fields Calculator
 - Quantity > H
 - Complex > Real
 - Geometry > Line > ProbeCurrent2
 - Tangent
 - •

AAS CNRS

- Complex > CmplxReal
- Quantity > H
- Complex > Imag
- Geometry > Line > ProbeCurrent2
- Tangent
- •
- Complex > CmplxImag
- +
- Add → enregistré sous LoopCurrent2

Named Expressions			Context: Mag	neticLoop —		
Name		^	Solution:	Setup1 :	LastAdaptive	
Surface_Force_De	ensity <surfacefor< td=""><td>cel Delete</td><td>Field Tupe:</td><td>Fields</td><td></td><td></td></surfacefor<>	cel Delete	Field Tupe:	Fields		
LoopCurrent2	+(CmplxR(Int	eg	riela rype.			
LoopCurrent3	+(CmplxR(Int	eg Clear All	Freq	1GHz		-
Hmod	CmplxMag(<	Hx	Phase	Odeg		
<		>				
Ad	d Co	opy to stack				
ibrary: Load I	From	Save To	CI	hange Variat	ble Values	
Push	Pop RIUp) RIDn	Exch	Clear	Undo	
Input	General	Scalar	Vecto	or	Output	
Quantity 🛨	+	Vec? 🛓	Scal?	±	Value	
Geometry	-	1/x	Mati		Eval	
Constant 🛨	×	Pow	Ma	g	Write	1
Number	1		Do	t	Export	
Function	Neg	Trig 🛨	: Cro:	ss		
Geom Settings	Abs	d/d? ₫	: Div	g		
Read	Smooth	ſ	Cu	rl l		
	Complex 🛓	Min 👲	: Tang	ent		
	Domain	Max 👲	Norn	nal		
			Unit Vec	±		
		In	V Form	+		
				- I		

×

<u>Remarque :</u> avec le maillage par défaut, à 100 MHz, le courant estimé par la première méthode est de 520 mA, et de 391 mA avec la seconde méthode. La première méthode est sensible à la qualité du maillage à l'intérieur du conducteur !

AAS

⁶ Calcul du champ magnétique

> Théoriquement, dans l'axe Z de la boucle, en supposant que le courant est uniforme le long de la boucle, le champ magnétique est donné par :

$$H(z) = \frac{I(\omega)}{2} \frac{R_l^2}{(z^2 + R_l^2)^{3/2}}$$

AAS

A z= 1.5 mm: |H| = 34.5 A/m A z= 5 mm: |H| = 12.7 A/m A z = 10 mm : |H| = 3.05 A/m

- > On trace une ligne normale à la boucle partant du centre (ProbeHFieldZaxis)
- > HFSS > Results > Create Field Report > Rectangular Plot

Couplage entre deux boucles

- Sauvegarder le projet sous MagneticLoop2. Supprimez tous les graphes de résultat.
- > Créer une nouvelle variable : Sep = 5 mm.
- > Changer le nom de la boucle \rightarrow LoopEmetteur
- Copier la boucle existante, la coller et la renommer LoopRecepteur.
- > Translation de Z = -Sep/2 de la boucle LoopEmetteur (Edit > Arrange Move)
- Translation de Z = Sep/2 de la boucle LoopEmetteur (Edit > Arrange Move)
- Même chose pour le port de la boucle LoopEmetteur, que l'on renommer PortEmetteur.
- > Copier ce port et le renommer PortRecepteur.

_AAS

CNRS

On va calculer le couplage entre ces deux bobines.

Réglage des solutions

- On peut réduire la taille du volume airbox (on réduira ainsi le temps de calcul
- Setup1 → on revient sur le setup par défaut (ordre des fonctions de base = 1 avec lambda target = 0.333)
- Sweep par interpolation entre 0 et 2 GHz, avec balayage log.
- On décoche les options solve inside dans les 2 boucles.
- > On lance la simulation.

.AAS CNRS

wee	p Name: Swee	ep.			✓ Enable
wee	p Type: Inter	polating	•		
-Fre	Distribution	241 points defin Start	ed] End		
	Log Scale	0GHz	2GHz	Samples	20
	Add Above	Add Belov		e Selection	Preview

Résultat paramètres S

> HFSS > Results > Create Terminal Solution Data Report > Rectangular plot

- > Analyse paramètres S
- > Quantity > Matrix Statistics > Passivity (doit être < 1)</p>

- > Analyse paramètres S
- > Check > Causality

elect by: 🖲 Frequencies 🔿 r	flatrix entries			View: C Table 🕫 Plot		
.00000Hz	^					
. 10000GHz			D.	60	A	
.20000GHz			P1	P2		
.30000GHz						
.40000GHz						
.50000GHz					Nonce	usel
.60000GHz						
.70000GHz		P1				
.80000GHz						
.90000GHz						
10000GHz						
,10000GHZ						
20000GH2					Inconc	lusive
40000CH-						
50000GHz						
60000GHz						
70000GHz		P2				
80000GHz						
90000GHz						
0000001	~				Causa	
[

> Bouton SYZ Data

Specify Export Options	×
Select Data	
S Matrix C Y Matrix C Z Matrix	
Select formatting	
Display format: Magnitude/Phase(deg)	
Number of digits precision: 6	
✓ Override solution renormalization Impedance: 50	Ohms
Include Gamma and Impedance comments	
OK Cancel	

Export sous-circuit SPICE

> Bouton Broadband

ile name: C:/Users/adm	inaboyer/alex/ProjetsSo	ientifiques/HFSS/forma	tion_Alex/Projet_!	Browse
Full wave spice format -	C Nevvin Stat	- Space ()	Touchstone 1.0	
		e space	Touchstone 2.0	
C Spectre	Simplerer	*		
Compare fit Edit of	lescription			
Use common ground				
Enforce model passivit	у			
Renormalize 50	ohms			
			Advar	red >>

Bouton Insert Circuit Design >

CNRS

LAAS-CNRS

- On l'enregistre sous CircuitCoupledLoops. >
- View > Component Libraries pour afficher le volet des librairies de composants (à droite de > l'écran)
- Sélectionner la catégories et « drag and drop » le composant à placer. >

- Set-up pour extraire l'inductance mutuelle (une alternative est de simuler directement le paramètre Z12)
- On ajoute un composant N ports, qui va contenir le fichier .s2p décrivant le couplage entre les 2 boucles, précédemment généré.

46

×

Simulation sous Nexxim circuit simulator

Linear Network Analysis, Frequency Domain

Enable Group Delay Calculations

Name: LinearFrequency

Group Delay

- Configuration d'une simulation AC : Circuit > Add Nexxim Solution Setup > Linear Network Analysis
- Lancement de la simulation : Circuit > Analyse (F10)

AAS

CNRS

	-		
I Enabl	e Noise Calculation		
Input Ref	arred Noise Noise Output		
	Ŧ		
		Add Dimous	1 1 1
		Edd AMAGE FICTIONS	(C-Cittan
		Edit	
∏ Skip I)C point Calculation	Output Quantities	
☐ Skip ()C point Calculation	Output Quantities	Edit C
☐ Skip (Output Quantities	Edit (
□ Skip I	C point Calculation	Output Quantities	Edit
Solution O	DC point Calculation ption (Default Options)	Cutput Quantities	Edit (
Solution O	DC point Calculation ption (Default Options)	Cutput Quantities	Edit (

Disable

Sweep Variables

Name

Sweep/Value

DEC 1MHz 1GHz 50

OK

Annuler

Aide

- > Affichage des résultats de simulation : interface commune aux outils ANSYS Electronics Desktop
- > Circuit > Results > Create Standard Report > Rectangular Plot

S Report: MagneticLoop2 - CircuitCoupl	edLoops - XY Plot 6 - Z12_mod	×	🚳 Output Variables	×
Context Solution: LinearFrequency	Trace Families Families Display	1	Output Variables	ed context
Domain: Sweep	Y: F Y: F Category: Quantity: Variables F	Range Function	Value of the second of the sec	Expression mag(V(VrLoop))/mag(I(IEmitLoop)) Expression à écrire
Update Report Image: Real time Image: Im	Output Variables S Parameter Y Parameter Z Parameter Voltage Current Return Loss VSWR New Report Apply Trace Add Trace	abs acos acosh ang_deg ang_rad asin asinh <	Name: Expression: Context	Add Update Delete Quantities Category: Voltage
			Type: Solution: LinearFrequency Domain: Sweep	Quantity: V(VrLoop) V(VrLoop) Mag normalize polar re rect sin
			Function abs Insert into	Expression Done

_AAS

CNRS

> Calcul de |Z12| :

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

- Inconvénient de l'approche Nports : si on modifie le modèle 3D sous HFSS, il est nécessaire de reconstruire le fichier Touchstone et de le changer sur Nexxim circuit simulator.
- Une autre approche consiste à créer un lien dynamique entre le modèle circuit et le modèle électromagnétique (HFSS), permettant ainsi une vraie cosimulation.
- Les signaux issus de la simulation circuit vont excités le modèle électromagnétique, dont les résultats vont alimenter le modèle circuit.
- > Seules les simulations Linear network et transitoires fonctionnent selon ce principe !
- > Pour cela, on créé un **Dynamic Link** entre Nexxim Circuit Simulator et HFSS.
- > Tout se fait depuis Nexxim Circuit Simulator

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Simulation sous Nexxim circuit simulator

- > Clic droit sur Circuit dans Project Manager
- > Add Subcircuit > Add HFSS Link

_AAS

CNRS

> Sélectionner le modèle HFSS et OK

Project Mana	ger		₽ ×			
🗄 🛅 Magn	eticL	oopD	DynamicLink 🔨			
	Datz Exci		Copy Paste	Ctrl+C Ctrl+V		
± € ± ∛	Port S1:N	×	Rename Delete	F2 Delete		
	Desi SoD		Design Options			
<	j Opu		Add Subcircuit	>	Add SubCircuit	1
Properties		-	Add Nexxim Solution Setup	>	Add HFSS 3D Layout	
Name	Valu		Add HSPICE Solution Setup	>	Add HFSS Link	Ē
CoSimulator	Def.		Add Alter Block		Add 2DExtractor Link	
CosimDefi		P	Browse Netlist Analyze	F10	Add Q3D Extractor Link Add Slwave Link	
			View DC Bias Values	> T		_

Name:	MagneticLoop3			
File:	C:\Users\admina	aboyer\alex\Proje	etsScientifiques\HFSS\for	mation_Alex ¹
Descriptior	n:			
Design:	MagneticLoop			•
Solution:	Setup1:Sweep			•
	mission line model	1		-
-Link Info	rmation			
Solutio	n:	Interpolating	sweep 0 Hz-2 GHz (Solve	ed)
Numbe	er of frequency poin	its: 241		
	r of pips	2		

- Une boite avec les ports du modèle HFSS et une image miniature du modèle géométrique apparait.
- > Le modèle HFSS s'ouvre aussi, s'il n'est pas ouvert.

- > Clic droit > Edit Component → définition du composant
- > Clic droit > Edit Symbol → pour modifier le symbole apparaissant sur la schématique
- > Clic droit > Edit Link Definition → pour modifier le lien avec HFSS

> Set-up de simulation des paramètres S/Z

> Résultat de simulation (Z11 et Z12)

