
BE électronique automobile 5e année ESPE

Presentation of MPC5744P
microcontroller (Panther)

http://www.alexandre-boyer.fr

Alexandre Boyer

Patrick Tounsi

 5e année ESPE

November 2023

http://www.alexandre-boyer.fr/

BE électronique automobile 5e année ESPE

 2

I - Presentation of the MCU MPC5744P .. 6

II - MPC5744P programming main steps ... 8
III - Clock generation description ... 8

1. Clock architecture ... 8
2. Peripheral clocks ... 10
3. Auxiliary Clock Dividers .. 11

4. Clock Monitor Unit (CMU) .. 12

5. External oscillator (XOSC) ... 12

6. Dual PLL and its interface (PLLDIG) ... 13
a. PLL0 .. 14
b. PLL1 or FMPLL .. 14
c. PLL frequency configuration ... 14

d. Register configuration of PLL0 ... 15
e. Configuration of PLL1 .. 16

f. Initialization procedure .. 16
IV - Mode entry module (MC_ME) ... 17

1. Presentation of the different modes ... 17

2. Mode entry module registers ... 18
a. Enabling modes ... 18

b. Mode configuration .. 19
c. Peripheral configuration .. 20

d. System mode selection and transition .. 21
3. Summary – MCU initialization procedure .. 21

V - Memory map ... 22

VI - Fault Collection and Control Unit (FCCU) ... 22

VII - GPIO pad configuration (System Integration Unit Lite2) ... 23
1. Presentation ... 23
2. Pad configuration .. 24
3. GPIO Data registers .. 25
4. REQ pads ... 26

VIII - Interrupt configuration ... 26
1. Interrupt service request (ISR) in MCU .. 26

2. Presentation of INTC and interrupt vector .. 27
3. Enabling maskable interrupt .. 28
4. Configuring hardware triggered interrupt ... 28

IX - Enhanced Direct Memory Access (eDMA) .. 29
1. eDMA overview .. 29

2. eDMA architectural integration... 31
a. Crossbar switch (XBAR) ... 31
b. Peripheral bridge (AIPS-lite) ... 33
c. DMA multiplexer (DMA_MUX) .. 36

3. Activating eDMA transfer ... 39
4. Transfer process .. 39

BE électronique automobile 5e année ESPE

 3

a. Handling multiple transfer requests ... 39

b. Major and minor transfer loops .. 40
5. Block diagram ... 41

a. Transfer Control Descriptors (TCD) ... 41
6. Configuring the eDMA ... 43

X - Motor control modules .. 45
XI - FlexPWM module ... 45

1. Presentation - Overview .. 45

2. Functional details .. 48
a. PWM clocking ... 48
b. Counter synchronization .. 48
c. Register reload ... 49
d. PWM generation .. 50

e. PWM alignment ... 51

f. Independent or complimentary channel operation .. 52

g. Deadtime insertion ... 52
h. Output logic ... 54
i. ADC triggering .. 54

3. PWM configuration ... 55

a. Control registers .. 55
b. Configuration of PWM signal parameters ... 56

c. Configuration of the output ... 56
d. Configuration of the deadtime ... 57
e. Output trigger .. 57

f. Run the PWM module ... 57
XII - Cross Triggering Unit (CTU) .. 58

1. Presentation - Overview .. 58
2. Functional details .. 60

a. Trigger Generator Subunit (TGS) ... 60
b. Scheduler subunit ... 62
c. ADC command list .. 63

d. ADC result FIFO .. 64

e. Reload .. 64
f. Interrupts .. 64
g. DMA .. 65

3. CTU configuration .. 65
a. Trigger input selection ... 65

b. Trigger generator subunit configuration .. 65
c. Scheduler subunit configuration .. 66

d. FIFO management ... 67
e. Interrupt management .. 68
f. General control of the CTU ... 68

XIII - Analog-to-digital converter (ADC) ... 68
1. Presentation - Overview .. 68

2. Structure and main features of the ADC ... 69
3. Functional description ... 70

a. Conversion modes ... 70
b. Clock and conversion time settings ... 72
c. Presampling ... 73
d. Programmable analog watchdog .. 73

BE électronique automobile 5e année ESPE

 4

e. Interrupts and DMA ... 73

f. Calibration ... 74
g. Self test ... 74

4. ADC registers .. 75
a. Configuration of the pad .. 75
b. Configuration settings of the ADC block .. 75
c. Conversion timing registers ... 75
d. Selection of analog inputs .. 75

e. Configuration of interrupts .. 76
f. Power down configuration ... 76
g. Data registers ... 77
h. Calibration, BIST Control and status Register... 77

XIV - Periodic interrupt Timer (PIT) ... 78

XV - SPI bus and SPI module .. 79

1. Some elements about SPI protocol .. 79

2. Presentation of DSPI module .. 80
a. General description .. 80
b. TX Buffering and transmitting mechanisms .. 81
c. RX buffering and receiving mechanisms .. 82

d. Transfer attributes .. 83
e. Interrupts .. 83

3. Configuration of the SPI module .. 84
a. Module configuration .. 84
b. Clock and transfer attributes .. 85

c. TX FIFO writing .. 85
d. RX FIFO writing .. 86

e. Interrupt/DMA configuration and status ... 86
XVI - UART with LINFlex module .. 87

1. Presentation of the LINFlex module in UART mode ... 88
2. Configuration .. 88

a. Initialization of LINFlex module ... 88

b. Configuration for UART mode .. 89

c. Status of the UART ... 89
d. Configuration of the baud rate ... 90
e. Transmission of a message .. 90
f. Reception of a message ... 91

XVII - Fault Collection and Control Unit (FCCU) ... 91

1. Presentation - Overview .. 91
2. Functional description of FCCU ... 92

3. EOUT interface ... 93
4. FCCU Output Supervision Unit (FOSU) .. 94
5. FCCU configuration .. 94

a. Configuration entry/exit .. 94
b. Global configuration of FCCU .. 95

c. Configuration of fault-recovery management for NCF ... 95
d. Configuration state timeout .. 97
e. Status of the FCCU - source identification .. 98
f. Software emulation of NCF ... 99
g. Interrupt requests ... 99
h. Fault-output signaling .. 99

BE électronique automobile 5e année ESPE

 5

BE électronique automobile 5e année ESPE

 6

This document aims at providing basic information for application development on the

microcontroller MPC5744P. The content of the document is not exhaustive and does not

detail every part of the microcontroller unit (MCU). Only the peripherals and functions which

are required for the lab are presented.

Some library and code source examples are also provided to get familiar with the MCU

programming. For more technical information about the component, please refer to the

reference manual MPC5744PRM.pdf. Links to the datasheet are provided in this document.

Remark: sometimes, the register names given in the datasheet do not match with those

provided by the MCU library MPC5744P.h. Don’t hesitate to verify the right name in the

library. You can also refer to code examples provided by NXP (Code Project Examples for

MPC574xP.zip) for help to configure the different peripherals of this microcontroller.

Your applications will be developed on evaluation boards DEVKIT-MPC5744P. Please refer

to the user manual DEVKIT-MPC5744P_QSG_v6.pdf for more detail about this evaluation

board, and to the schematic DEVKIT-MPC5744P Schematic_RevB (SCH-29333).pdf.

I - Presentation of the MCU MPC5744P
MPC5744P is a MCU developed by NXP Semiconductor and

belongs to the Qorivva family MPC574x, also called Panther. It is

a 32 bit double core MCU dedicated to motor control application

in automotive (inverter in hybrid or electric vehicle, electronic

power steering, suspension, braking…). It targets applications

which require a high Safety Integrity Level (SIL). This MCU

complies with SafeAssure requirements in order to meet the

automotive safety standard ISO26262 ASIL A to D.

Both cores of the MCU are based on a Power Architecture ® and a

e200z4 CPU. Both cores operate in delayed lock step to ensure

integrity of the embedded program execution.

The version used in the Lab is mounted in a LQFP 144 package. Its main characteristics are:

▪ Core frequency up to 200 MHz MHz, based on two frequency modulated PLL (FM

PLL)

▪ The MCU is supplied under 1.25 V (for the core) and 3.3 V for I/O and analog part.

The Analog to digital converter reference can withstand 5 V.

▪ Up to 2.5 MB of Flash memory and 384 KB of SRAM memory, with Error Correcting

Code (ECC) feature, and memory protection unit (MPU)

▪ Embedded floating point unit (EFPU2) to support real-time single-precision floating-

point operations using the general-purpose registers. Moreover, a Lightweight Signal

Processing Extension (LSP) is provided to support real-time fixed-point operation

using the general-purpose registers.

▪ An interrupt controller (INTC) with 32 priority levels

▪ 4 modules of 16 channels for 12-bit analog-to-digital converters (ADC), with

hardware Built-In Self Test (BIST) and analog watchdogs. 22 analog pads are

provided in the version mounted in LQFP144.

BE électronique automobile 5e année ESPE

 7

▪ Two PWM modules (FlexPWM) containing four submodules of complementary

channels, mainly dedicated to three phase inverter control.

▪ Two modules of Cross-Triggering Unit (CTU) to trigger ADC on PWM signals.

▪ 4 serial peripheral interface (DSPI) modules with 8 chip select signals

▪ 2 serial communication interface (LINFlex) supporting UART communication, 3

CAN modules (FlexCAN)

▪ Up to 79 configurable general-purpose input-output (GPIO) and 23 general-purpose

input (GPI) in the LQFP144 version

▪ One periodic interrupt timers (PIT) module with 4 channels and 32-bit counter

resolution

▪ Device testing based on JTAG bus (IEEE 1149.1)

▪ The MCU has four different configurable running modes, two low power modes and

one safety mode.

▪ A programmable Fault control and Collect Unit (FCCU) to monitor the status of the

MCU and configure its reaction in case of failure

Fig. 1 presents the block diagram of the MCU. The name of the main internal parts and

peripherals of the MCU are shown.

Cross Bar Switch –E2E ECC (Addr+Data)

Memory Protection Unit – 32 regions

1M
FLASH (I/D)
(A+D ECC)

PMU

SWT

MCM

STM

INTC

CACHE

Power™
e200

VLE

S-FPU

DLMEM
Nexus/
Aurora

JTAG

Debug

CACHE

Power™
e200

Safety
Checker

VLE

S-FPU

2
 x

LIN
Flex

4
 x D

SP
I

4
 x A

D
C

3
FlexC

A
N

3
 x

e
Tim

e
r

FC
C

U

2
 x

FlexP
W

M

2
x C

TU

2
 x TSEN

S

I/D-cache

128 KB
SRAM

(A+D ECC)

FlexRaySIPI

2
 x SEN

T

Safe
eDMA

Safety Lake

I/O
Bridge

SRAM Ctrl
Multi Ported

Flash ctrl
I/O

Bridge

I/
O

 S
ys

te
m

Crossbar Slaves

Ethernet

Motor control peripherals

Crossbar Masters

Figure 1 - Block diagram of MPC5744P

BE électronique automobile 5e année ESPE

 8

II - MPC5744P programming main steps
This part aims at giving the main steps for the programming of the MCU. You are not forced

to follow this sequence, it intends only to help you to start with programming.

▪ Initialization of system clock and modes for system and peripherals (see Part III of this

document for clock generation, and Part IV for mode entry module MC_ME).

The operation mode must be defined at initialization for every peripheral. Enter in

RUNx (x = 0 to 3) mode (see Chapter 8 for mode entry module MC_ME)

▪ Configure input-output pads (direction, alternate function activation, output drive,

pull-up, pull-down, filtering) (see chapter 20 for System Integration Unit Lite module

SIUL)

▪ Configure peripherals (clock, interrupt enable, parameters, energy mode…)

▪ Configuration of INTC interrupt handlers

▪ Enable maskable interrupt requests

▪ Launch peripherals

▪ Main program

Tips: during the configuration of the peripherals, ensure that the applied clock complies with

the maximum frequency requirements. Incorrect frequency settings may result in failures or

degraded operation.

The register names can be found in the MPC5744P reference manual, but the given names can

differ from the actual name defined in the MCU library. Refer to the header file MPC5774P.h

(normally included in your projects) to find the correct names of registers and bits.

III - Clock generation description
Refer to Chapter 13 – Clocking for more details about the clock structure of the

microcontroller. The management of the clock sources and clock distribution through the chip

is ensured by the Clock generation module (CGM), which is described in Chapter 27 Clock

Generation Module (MC_CGM).

Only the configuration of XOSC, PLL0 and PLL1 are presented in this document. The

activation and selection of clock sources for the system clock are managed by the mode entry

MC_ME module, described in part IV of this document. Detail of the configuration of the

PLL blocks can be found in chapter 25 of the reference manual (Dual PLL Digital Interface

(PLLDIG)). The MCU provides also a clock Monitor Unit (CMU) to check the integrity of

the different clocks. Refer to chapter 26 for more details about this module.

1. Clock architecture

The MCU contains several bus clocks which run at different configurable frequencies. They

are dedicated to specific parts of the MCU. These clocks can be produced by three different

internal sources:

▪ 16 MHz internal RC oscillator (IRC); this clock is activated by default for boot and

backup purpose.

▪ External quartz oscillator (XOSC); it can run between 8 and 44 MHz

▪ Dual PLL, formed by PLL0 and PLL1. PLL0 provides two outputs: PHI and PH1. The

PHI1 output of PLL0 can also be used as the clock source for PLL1. PLL1 can be FM-

modulated for EMI reduction purpose

BE électronique automobile 5e année ESPE

 9

The overall clock architecture of the MCU is described in Figure 2. The figure describes the

connections between the clock sources (IRC, XOSC, PLL), the different internal bus clocks

(XXX_CLK), the location of the different CMU. The core of the MCU is clocked by

SYSCLK. The other clocks are dedicated to the different peripherals, as explained in the next

part.

Figure 2 – MPC5744P Clock network architecture (MPC5744PRM.pdf - p. 337 – Fig. 13-1)

The source of the bus clocks can be selected to drive system peripherals depending on the

configuration of the Auxiliary Clock Selectors. A total of seven clock selectors allows

developers to select the PLL reference clocks, drive various system peripherals with an

independent clock source. Each of the outputs of the Auxiliary Clock Selectors has up to three

dividers, which allows for even more clock frequency granularity with division factors up to

64 for a given group of peripherals.

BE électronique automobile 5e année ESPE

 10

The quality of clock sources is checked by the Clock Monitor Unit (CMU). This module can

detect loss of clock integrity and switch to a SAFE mode in case of clock failure interrupt. It

can also be used as frequency meter.

Figure 3 summarizes the limitation of the different bus clocks. They are required to maintain

synchronization between the different branches of the clock system. Any incorrect

configuration may result in failure or unpredictable behavior.

Figure 3 – System clock limitation (MPC5744PRM.pdf - p. 339 – Table 13-2)

The pin PB[6] proposes as alternate function CLKOUT, for the external observation of the

system clock. The bit EN in the register CGM_OC_EN is set to enable the output clock (see p

138). The frequency of the output clock can be divided through the content of the register

CGM_OCDS_SC.

2. Peripheral clocks

The following figure shows the distribution of the clock buses to the different peripheral

modules (more details in part 13.6). All the peripheral clocks are switched off by default.

They can be gated for energy saving purpose. The selection of the clock source of a peripheral

clock and its frequency setting is explained in the next part.

Tips: before initializing any peripheral modules, ensure that its peripheral clock was switched

on before.

BE électronique automobile 5e année ESPE

 11

Figure 4 – Clock distribution (MPC5744PRM.pdf - p. 347 – Figure 13-3)

3. Auxiliary Clock Dividers

One of the purpose of the block MC_CGM is the generation of peripheral clocks. Typically,

three registers are related to the control of the auxiliary clocks:

▪ ACn_SC: clock source select between IRC, XOSC, PLL0 and PLL1

▪ ACn_SS: status of the clock source selection (read only)

▪ ACn_DC: activation and configuration of the divider of the auxiliary clock. The

division is equal to DIV+1. The write access to DIV is enabled only if DE is set. Byte

and half-word write accesses are not allowed for this type of register.

BE électronique automobile 5e année ESPE

 12

The MC_CGM generates the following peripheral clocks (refer to Table 13-1 p 338):

▪ PBRIDGE0/1_CLK - controlled by CGM_SC_DC0 register

▪ Motor Control clock - controlled by the CGM_AC0_DC0 register

▪ SGEN clock - controlled by the CGM_AC0_DC1 register

▪ ADC clock - controlled by the CGM_AC0_DC2 register

▪ FlexRay clock - controlled by the CGM_AC1_DC0 register

▪ SENT clock - controlled by the CGM_AC1_DC1 register

▪ CAN clock - controlled by the CGM_AC2_DC0 register

▪ LFAST PLL clock - controlled by the CGM_AC5_DC0 register

▪ CLKOUT pin clock - controlled by the CGM_AC6_DC0 register

▪ ENET clock - controlled by the CGM_AC10_DC0 register

▪ ENET TIME clock - controlled by the CGM_AC11_DC0 clock register

Moreover, MC_CGM controls the selection of clock sources for PLL0 and PLL1:

▪ PLL0 - clock source selected by the MC_CGM_AC3_SC register

▪ PLL1 - clock source selected by the MC_CGM_AC4_SC register

4. Clock Monitor Unit (CMU)

Five Clock Monitor Units (CMU) are placed on clock buses in order used to test their

integrity and make sure that their frequencies stay within necessary operating limits. They act

as frequency meter, with IRCOSC used as clock monitor reference. For all safety critical

clocks, the microcontroller detects a missing clock or incorrect frequency.

If any of the five CMU detects an issue with the clock signal that is being monitored, an

interrupt or system reset could be generated, depending on how the CMUs are configured.

Each CMU is programmed independently. The reaction of the MCU to a clock loss depends

on the configuration of the FCCU.

Table 13.6 p 351 lists the monitored clocks by the different CMU.

Figure 5 – Monitored clock by the CMU (MPC5744PRM.pdf - p. 351 – Figure 13-6)

5. External oscillator (XOSC)

Refer to Part 13.5.2 and Chapter 28 for more information about FXOSC and its configuration.

This on-chip oscillator uses 8 MHz to 44 MHz crystal inputs. It can provide a clock source for

the system clock, both PLL and the different peripheral clocks. The energy management, the

BE électronique automobile 5e année ESPE

 13

activation and the selection of XOSC as system clock are controlled by the mode entry

MC_ME module.

The only register which controls the XOSC is XOSC_CTL (p 841). OSCBYP controls the

bypass of the oscillator, EOCV counter specifies the duration for oscillator stabilization

checking. The interrupt linked to XOSC clock failure is enabled by the bit M_OSC. The flag

bit I_OSC indicates if an oscillator clock interrupt is pending. It must be cleared by writing a

‘1’.

After reset, XOSC is placed in powerdown mode. Its switch on is controlled by software

through the MC_ME module (ME_<mode>_MC register, XOSCON bit). The availability of a

stable oscillator clock is indicated by the status bit S_XOSC in the register ME_GS of the

MC_ME module.

6. Dual PLL and its interface (PLLDIG)

Refer to Part 13.5 and Chapter 25 for more information about dual PLL systems. The PLL

system in the MPC5744P is a dual PLL that provides separate system and peripheral clocks.

The dual PLL system is composed of PLL0 and PLL1 analog blocks and the digital interface

(PLLDIG) for PLL configuration. The two analog PLL blocks are cascaded, with the PHI1

output of PLL0 feeding the clock input of PLL1. The PHI0 output of PLL0 can serve as clock

source for the core or the peripheral clocks. With such an architecture, two clock sources with

independent frequencies can be used to drive peripherals and system core. While PLL0 is

non-modulated, PLL1 can be modulated for EMI reduction purpose.

The overall architecture of the dual PLL system is described in Figure 6. The PLLs are

disabled after power on and must be enabled by software:

▪ PLL0 is the primary PLL. This PLL is used to source a non-Frequency Modulated

clock to the MPC5744P modules and also the reference clock to PLL1.

▪ PLL1 is a Frequency Modulated PLL (FMPLL) that is typically used to drive the

system clock. PHI is the output of PLL1 which drives the System Clock Selector and

AUX Clock Selector 6 of the MC_CGM.

BE électronique automobile 5e année ESPE

 14

Figure 6 – Block diagram of the PLL (MPC5744PRM.pdf - p. 341 – Fig. 13-2)

a. PLL0

The possible input clock sources for PLL0 are the XOSC, IRCOSC, and EXTAL Bypass. The

EXTAL Bypass input is the EXTAL pin. AUX Clock Selector 3 selects which input clock

will be used as the source for PLL0. The output clocks from PLL0 are PHI and PHI1. The

PHI output clock drives various peripheral clocks and the system clock when selected in the

MC_CGM. The PHI1 output provides one of the input references for PLL1.

b. PLL1 or FMPLL

The possible input clock sources for PLL1 are XOSC, PLL0_PHI, and EXTAL Bypass. The

EXTAL Bypass input is the EXTAL pin, which "bypasses" the XOSC output. AUX Clock

Selector 4 selects which input clock is used as the source for PLL1. The selection between

XOSC and EXTAL Bypass is made via the XOSC_CTL register of the XOSC module. The

output clock from PLL1 is the PHI clock, which can drive the system clock if the System

Clock Selector of the MC_CGM is configured to do so. The PHI output clock contains a

fractional divider that can be applied to the loop divide of the PLL to achieve good granularity

in the PLL1 PHI output clock frequency.

c. PLL frequency configuration

Except for the frequency modulation, the configuration of both PLL is quite similar. Figure 7

gives an overview of both PLL block diagram and the register to set their frequencies.

MFD

PREDIV

RFDPHI1

RFDPHI

RFDPHI

MFD

MC_CGM.AC3_SC.SELCTL

MC_CGM.AC4_SC.SELCTL

Figure 7 – Block diagram of both PLL and the register for frequency setting

BE électronique automobile 5e année ESPE

 15

The relationship between input and output frequency is determined by programming the

PLL0DV, PLL1DV, and PLL1FD registers, and calculated according to the following

equations:

The relationship between the VCO frequency (fVCO) and the output frequency of the PLLs is

determined by the configuration of the PLL1DV, PLL1FD, and PLL0DV registers, according

to the following equations:

The frequency setting depends on the configuration of several registers, which must be done

carefully. PLL and VCO inputs and outputs must lie within frequency ranges to ensure a

correct operation. Any incorrect settings may lead to an unpredictable failure. PHI and PHI1

of PLL0 ranges are 4.76 - 200MHz and 20 - 156 MHz respectively. PLL1 output range is 4.76

- 200MHz. PLL0 input clock range is 8 - 40 MHz, while PLL1 input clock range is 38 - 78

MHz. When programming the PLLs, user software must not violate the maximum system

clock frequency or max/min VCO frequency specification of PLL0 and PLL1 (between 600

and 1250 MHz). Furthermore, the PLL0DV[PREDIV] value must not be set to any value that

causes the input frequency to the phase detector of analog PLL blocks to go below the

prescribed ranges.

d. Register configuration of PLL0

The input clock is selected by the auxiliary selector 3, through the field SELCTL of register

MC_CGM.AC3_SC and can be provided by either the IRC oscillator (SELCTL = 0) or

XOSC quartz oscillator (SELCTL = 1). The frequency setting for outputs PHI and PHI1

depends on the configuration of several dividers, defined in the register PLL0DV. The divider

names are the same as those used in the block diagram shown in Figure 7:

▪ PREDIV defines the division factor of the input clock of PLL0 (from 1 to 7).

▪ MFD defines the loop multiplication factor divider (from 8 to 127)

▪ RFDPHI and RFDPHI1 define the frequency dividers on PHI (from 1 to 63) and PHI1

(from 4 to 15) outputs

PLL0DV can be modified at anytime, but the changes become effective only after the PLL is

disabled and then re-enabled. If these fields are changed without powering down the PLL, the

PLL will lose lock and generate either a reset or interrupt based on which is enabled.

BE électronique automobile 5e année ESPE

 16

Two interrupts are related with PLL0: loss of clock and loss of lock. They can be enabled

through the bits LOLIE and LOCIE in register PLL0CR. The status of related flags are given

by PLL0SR register.

The activation of the PLL0 by the bit PLL0ON in MC_ME.RUNx_MC register (see part IV).

e. Configuration of PLL1

The configuration of PLL1 is very similar to PLL0, except the clock source and the frequency

settings. The input clock is selected by the auxiliary selector 4, through the field SELCTL of

register MC_CGM.AC4_SC. It can be either the XOSC quartz oscillator (SELCTL = '01') or

PLL0_PHI1 output (SELCTL = '11').

The frequency settings depend on two registers: PLL1DV and PLL1FD. In PLL1DV, the

values of the reduced frequency divider (RFDPHI) and loop multiplication factor divider

(MFD) can be modified at anytime, but the new values only become effective after the PLL is

disabled, then re-enabled.

▪ MFD defines the loop multiplication factor divider (from 16 to 34)

▪ RFDPHI define the frequency divider on PHI output (from 1 to 63).

The frequency of PLL1 output can be finely tuned by enabling a fractional divider, set by

register PLL1FD. The fractional divider is enabled by the bit FD_EN and the division factor

is defined by the field FRCDIV.

The activation of the PLL1 by the bit PLL1ON in MC_ME.RUNx_MC register.

f. Initialization procedure

From RESET state, PLL0 and PLL1 are disabled. The initialization procedure is explained in

part 13.5.1.4 - p 343 of the reference manual.

BE électronique automobile 5e année ESPE

 17

IV - Mode entry module (MC_ME)
This block controls the different modes of the MCU and the transition sequences between the

different modes. The notions of modes and transitions between modes are essential to

configure the MCU correctly and initiate the user mode, which the normal operation mode.

Refer to Chapter 59 – Mode entry module for more details about the MPC5744P modes.

1. Presentation of the different modes

The MCU proposes different modes corresponding to different usages (system configuration

and monitoring, user mode, low power modes…). The embedded software executes only in

DRUN, SAFE, TEST and RUN0..RUN3 modes. RESET, DRUN, SAFE and TEST modes are

system modes. They are dedicated to the configuration and the monitoring of the system.

RUN0..RUN3, HALT0, STOP0 and STANDBY0 are user modes. HALT0, STOP0 and

STANDBY0 are low power modes. In the next chapter (Wakeup Unit), the procedure to exit

these low power modes will be detailed. The configuration of the MCU mode depends on the

requirements in term of energy management and processing power. Figure 8 presents a state

diagram of the microcontroller modes and the possible transitions.

▪ RESET: the application is not active, the chip configuration is initialized. The system

enters in this mode after a reset.

▪ DRUN: entry mode for the embedded software. It enables the configuration of the

system at the start-up. This is the only mode entry to a user mode. If the embedded

software does not enable a transition between DRUN mode and a user mode, the main

program defined by the user cannot execute. The system enters in this mode after the

end of Reset mode, and after software request from RUN0..RUN3, SAFE, TEST

modes, and a wake up request from STANDBY mode.

▪ SAFE: the system enters in this mode after the detection of a recoverable error. The

system exits this mode after a reset or DRUN from software (refer to part XVII of this

document - FCCU for details about configuration of the MCU to errors).

▪ TEST: for device self-test. The system enters in this mode from DRUN mode by

software request. The system exits this mode after a reset or by software request to

come back in DRUN mode.

▪ RUN0 .. RUN3: these are the embedded software modes where most processing

activity is done. 4 RUN modes are provided to enable different power and clock

configuration. The system enters in one of these modes after DRUN by software

request, interrupt event from HALT0, interrupt or wake up event from STOP0. The

system exists one of these modes after reset, entry in SAFE mode after an hardware or

software error, HALT0, STANDBY0 or STOP0 by request.

▪ STOP0: Reduced activity low power mode. The wakeup signals are processed rapidly,

contrary to HALT mode. By default, system clock is FIRC, but it can be switched off.

The data and flash memories are powered down but can be activated; the main

regulator is switched on. See chapter Wakeup Unit for more details about the exit of

STOP0 mode.

BE électronique automobile 5e année ESPE

 18

▪ HALT0: Reduced activity low power mode. The clock core is disabled. The analog

peripherals can be switched off. The system enters in this mode by software request

from RUN0..RUN3 modes. The systems leaves this mode after a reset, after a

hardware or software failure to go in SAFE mode, or interrupt event to come back in

previous RUN0..RUN3 modes. Contrary to STOP0 and STANDBY0 modes, wakeup

signals cannot be used to exit from HALT0 mode.

▪ STANDBY0: This is the lowest power mode which ensures a reduced leakage current.

Most of the blocks of the MCU are switched off from the power supply to reduce

leakage current. Wake up from this mode is quite long. The system enters in this mode

by software request from DRUN, RUN0..RUN3 modes. The system leaves this mode

after reset, of after wake-up event to enter in DRUN mode (see chapter Wakeup Unit).

The wakeup from STANDBY0 mode is longer than from STOP0 mode. All the pins

are in high impedance mode. Only the reset generation mode, power control unit,

wake up unit, 8K RAM, RTC/API, CAN sampler, IRC and XOSC are powered.

Figure 8 – Mode entry diagram and possible mode transitions (MPC5744PRM.pdf - p. 2386– Fig.
59-2)

2. Mode entry module registers

a. Enabling modes

The Mode Enable Register ME allows enabling or disabling some MCU modes (except

RESET, DRUM, SAFE and RUN0).

BE électronique automobile 5e année ESPE

 19

b. Mode configuration

A mode configuration register is associated to each mode to control the connection or

disconnection of some peripherals in the mode, such as the I/O output buffers, internal voltage

regulator, data and code flash memory, PLL, fast external crystal and RC oscillators. It

specifies also the system clock (SYSCLK) used by the system (PLL, crystal oscillator, fast

RC oscillator…). All these registers have the same structure. The following figure shows the

register structure for RUN0 .. RUN3 mode configuration registers, called RUN[0] to RUN[3].

BE électronique automobile 5e année ESPE

 20

c. Peripheral configuration

Up to eight different behaviors can be configured for the peripherals of the MCU in the

different run modes. These 8 behaviors are defined by the Run Peripheral Configuration

Registers 0 to 7 (RUNPC[0] to RUNPC[7]).

Setting a bit associated to a mode to ‘0’ means that, if this configuration is given to a

peripheral, this peripheral will be frozen in with clock gated during this mode. If this bit is set

to ‘1’, the peripheral will be active. For example, let’s suppose that we define one behavior in

RUNPC[0] and we write 0x00000030. If this configuration is associated to one peripheral,

this peripheral will be active only in RUN0 and RUN1 mode. In all other modes, it will be

frozen.

For the low power modes HALT0 and STOP0, 8 behaviors can also be configures through the

registers Low Power Peripheral Configuration LPPC[0]to LPPC[7].

Once the different possible behaviors have been configured with registers RUNPC and LPPC

registers, these behaviors can be associated to the peripherals of the MCU. 32 registers called

Peripheral Control Registers PCTL[9]to PCTL[255] are associated to each peripheral. These

registers contains 3 fields: the field RUN_CFG defines which one of the 8 behaviors defined

in RUNPC[0] to RUNPC[7] will be associated to the peripheral during the run modes. The

field LP_PC defines which one of the 8 behaviors defined in LPPC[0] to LPPC[7] will be

associated to the peripheral during the non run modes. The bit DBG_F sets the behavior of the

peripheral in Debug mode.

The status of the peripherals is given by the registers PS0, PS1, PS2 and PS3.

Remark: to find the correct PCTL register associated to one peripheral, refer to the memory

map of the ME module (Table p 2291, the PCTL register can be found at the end of the table).

For example, the register PCTL[237] is associated to the ADC0 block, the register PCTL[255]

is associated to the module PWM0.

BE électronique automobile 5e année ESPE

 21

d. System mode selection and transition

The Mode Control Register MCTL is used to trigger mode change by software. The

TARGET_MODE field defines the target mode to be entered by software request.

The KEY field is a control key to enable the writing in this register. The KEY is 0x5AF0. A

different value is invalid and any writing in the register will be ignored. Actually, two writing

of the register have to be done to force the device to enter in the mode defined by

TARGET_MODE: first time with the good value of the key, a second time with the inverted

value of the key. For example, suppose that we want the system to exit DRUN mode to enter

RUN0 mode. The TARGET_MODE field must be equal to ‘0100’. Therefore, the two

following lines have to be written in the software:

MC_ME.MCTL.R= 0x40005AF0; /* Enter the target mode and the Key */

MC_ME.MCTL.R= 0x4000A50F; /* Enter the target mode and the inverted Key */

The global mode status of the system is given by the register Glogal Status Register GS. The

field S_CURRENTMODE notifies the current device mode. The bit S_MTRANS notifies if a

mode transition is on-going. It gives also the status of several MCU peripherals.

3. Summary – MCU initialization procedure

The procedure to initialize the MCU is always the same and describes below. This procedure

must be done in DRUN mode.

1. Enables the modes to be used

BE électronique automobile 5e année ESPE

 22

2. Configure the clock sources

3. Configure the modes to be used

4. Configure the peripherals

5. Switch from DRUN mode to a user mode (RUN0,1,2,3)

Tips: in case of lack of operation of one peripheral, ensure that it has been enabled in the

current running mode. If it is not the case, the peripheral is frozen.

V - Memory map
The memory map of the MPC5744P is described in Chapter 5 of the reference manual. The

addressing is done at the octet level. Before any write/read operation in the memory, ensure

that it is not done in a reserved area. Any operation in a reserved area of the memory may lead

to a degraded and unpredictable operation.

For example, the system RAM, which is dedicated for embedded program, is located between

address 0x40000000 and 0x4005FFFF. You cannot use this part of the memory to store data.

In contrary, the address region between 0x50800000 and 0x5080FFFF , which is called D-

MEM CPU0, is a 64 kBytes area to store data.

VI - Fault Collection and Control Unit (FCCU)
Refer to chapter 69 - Fault Collection and Control Unit (FCCU).

The Fault Collection and Control Unit (FCCU) offers a hardware channel to collect faults and

to place the device into a safe state when a failure in the device is detected. No CPU

intervention is requested for collection and control operation.

Collect faults and configurable fault control and reaction.

Main features:

Management of non-critical faults

• HW or SW fault recovery management

• Fault detection and collection

• Fault injection (fake faults)

• External reaction (fault state): EOUT signalling. Error indication via the pin(s) is

controlled by the FCCU.

• Internal chip reactions (alarm state): interrupt request

• Internal chip reactions (fault state):

• long functional reset request pulse

• short functional reset request pulse

• NMI

• Bi-Stable, Dual-Rail and Time Switching output protocols on EOUT

• Internal (to the FCCU) watchdog timer for the reconfiguration phase

• Configuration lock

BE électronique automobile 5e année ESPE

 23

Two pins sent to SBC: EOUT[0] and EOUT[1] (Error Output—Indicate to off-chip logic that

a fault has occurred).

Dual core operation: transparent for the programmer. The only thing to do is to configure the

FCCU.

VII - GPIO pad configuration (System Integration
Unit Lite2)

Refer to Chapter 16 – System Integration Unit Lite for the configuration of General Purpose

I/O (GPIO) pads and the multiplexing of alternate functions associated to GPIO. Refer also to

chapter 4 for the signal description and the pin-out of the MPC5744P according to the

package version.

1. Presentation

The microcontroller MPC5744P may support up to 32 ports of 16 I/O pads, i.e. 512 pads. In

practice, only 10 ports (port A to J) are provided. Depending on the package, some pins may

be removed. The I/Os of the microcontroller are supplied under 3.3 V, so I/Os support only 0-

3.3 V signal !

All the pad can be configured independently through the pad configuration registers. Two

different pad configuration registers exist for each pad to multiplex the which source signal is

connected to the register's associated destination (input or output buffer of the pad):

▪ the register Multiplexed Signal Configuration Register (MSCR[n] with n from 0 to

263) for multiplexing from on-chip module to the pad output buffer

▪ the register Input Multiplexed Signal Configuration Register (IMCR[n]) for

multiplexing from the pad input buffer and the on-chip module

BE électronique automobile 5e année ESPE

 24

The number of the MSCR and IMCR register related to a given pad can be found in table 4.7

p 107 or table 4.16 p 151 of the reference manual. Be careful, the number associated to

MSCR and IMCR for the same pad are different !

For example, the pad PA[0] is associated to the register MSCR[0], but three different IMCR

are related to PA[0]: IMCR[48], IMCR[59] and IMCR[173].

One input register GPDI and one output register GPDO are associated to each pad. 15 GPIO

are associated to External Interrupt Request (EIRQ) pins (EIRQ[0:15]). They can trigger

interrupt on rising edge or falling edge events, depending on the configuration of registers

SIUL_IREER and SIUL_IFEER. Some glitch filter can be configured at the input of these

pins.

2. Pad configuration

Most of the pad configuration is related to MSCR register. MSCR also controls the routing of

source signals from various on-chip module to one I/O pad. The routing of a signal from I/O

pads to an on-chip module is controlled by the peripheral input multiplexing register: IMCR

register. Figure 9 illustrates the connection between on-chip module and input/output buffer.

Figure 9 – Multiplexing between on-chip module and input/output buffer of I/O pad
(MPC5744PRM.pdf - p. 497– Fig. 16-2)

MSCR[n] registers controls:

▪ the activation of input and output buffers (bits IBE and OBE)

▪ the activation of the analog pad (bit APC, required when the signal is routed to an

analog block)

▪ the activation of pull-up or pull-down devices

▪ the slew rate and drive of the I/O (SRC fields). Full drive without slew rate control is

required for high speed I/O. For EMI reduction purpose, it is required to use reduced

drive with slew rate control for I/O without high speed constraints.

▪ the source signal (up to 4) through the field SSS.

The details of multiplexing associated to each IMCR registers can be found in part 4.3.6 of

the reference manual (p. 136).

BE électronique automobile 5e année ESPE

 25

Tips : if an I/O pad is used as an output, the bit OBE must be set to '1' and the bit IBE to '0'. If

the I/O pad is used as an input, the bit OBE must be set to '0' and the bit IBE to '1'.

Tips : the list of pins with analog functions can be found in part 4.3.7 of the reference manual

(p. 148).

3. GPIO Data registers

The logical status of I/O pads can be accessed at pad level, but also at port level. Here, the

different methods to read or write I/O pads are described.

The data are written on individual output pads by the bit PDO of the registers GPDO[n], n = 0

to 263, where n is the MSCR number associated to the pad. The data are read from individual

input pads by the bit PDI of the registers GPDI[n], n = 0 to 263.

The I/O pads are mapped into ports of 16 I/O pads. I/O ports can be accessed in parallel mode

with registers PGPDO and PGPDI for writing and reading direction respectively.

Figure 10 – Mapping of I/O ports to PGPDO registers (MPC5744PRM.pdf - p. 149– Table 4-12)

Figure 11 – Mapping of I/O ports to PGPDI registers (MPC5744PRM.pdf - p. 149– Table 4-13)

BE électronique automobile 5e année ESPE

 26

It is also possible to write on output ports through a mask, defined by the registers

MPGPDO[n]. Each 32 bit register is associated to one port. The 16 most significant bits of the

register define the mask (field MASK). The 16 least significant bits define the data to be

written on the output buffer (field MPPDO).

4. REQ pads

32 GPIO are also defined as external interrupt request input pins, called REQ[n], n from 0 to

31. Any rising or falling edge events applied on these input pads can trigger maskable

interrupts. Four interrupts request are associated to REQ pads (SIUL2 External Interrupt 0 to

3, vectors 243 to 246). The 8 first REQ pads are associated to the first interrupt request vector

while the 8 last EIRQ are associated to fourth interrupt request vector.

The interrupt request associated to each EIRQ input can be individually enabled by the

register DIRER0. The reaction of the MCU to external interrupt request can be either a direct

memory access (DMA) or an interrupt, depending on the configuration of DIRSR0.

Each time an interrupt is pending, the flag bit EIF of the register DISR0 is set to ‘1’. Writing a

‘1’ clears the flag. Interrupt can arise on rising and/or falling edge events on REQ pins. It can

be configured by the registers IREER0 and IFEER0.

Noise coupled on input pins can induce glitches that may be misread as a rising or falling

edge. Therefore, digital glitch filter can be enabled on each REQ inputs, by setting bits IFE in

IFER0 register. The digital glitch filters are configured by the registers IFMCR and IFCPR.

VIII - Interrupt configuration
Refer to Chapter 21 – Interrupt Controller (INTC) for the configuration of priority of the

different interrupt source.

1. Interrupt service request (ISR) in MCU

All the real-time controllers in interaction with their environment operate by interruption of

their on-going program. The execution of functions depends on external events (e.g. pushed

button, detection of a voltage above a given threshold, reception of a signal…). The interrupt

service requests (ISR) are predefined and associated either to hardware peripherals, resets or

software requests. When the conditions for the triggering of an interrupt are detected by the

CPU, the execution of a function dedicated to the ISR processing can launched, depending on

the interrupt configuration (interrupt enabled or not if the interrupt is maskable), the content

of interrupt vector table and the level of priority of the ISR.

The interrupt vector table is an area of the memory divided in interrupt vectors. Each interrupt

vector has a fixed memory address and is associated to a given ISR (e.g. edge detection on an

input digital buffer or time-out of a timer). At the address of the interrupt vector, the memory

contains the address of the function dedicated to the processing of the ISR (for example, when

an edge is detected on an input digital buffer, the programmer wants to launch a program that

switch on an external LED). The programmer must know exactly the address of interrupt

vector in order to associate an ISR to the execution of a processing function.

When an ISR is triggered during the execution of the main program, the address of the next

instruction of the main program must be saved, in order to come back to the main program

after the processing of the interrupt. In practice, before stopping the execution of the main

program and launch the interrupt program, the content of the program counter is saved and

will be updated at the end of the interrupt program.

BE électronique automobile 5e année ESPE

 27

The interrupt management is complex and is done by an interrupt controller (INTC) which

aims at scheduling the ISR, i.e:

▪ Notifying the CPU that an ISR is transmitted by a peripheral or the software

▪ Managing the priorities between the different incoming ISR

▪ Transmitting to the CPU the address of the program to process the interrupt

2. Presentation of INTC and interrupt vector

The following figure describes how interrupt requests are handling and the position of the

INTC block. In the MCU core (e200z4), registers called Interrupt Vector Offset Register

(IVOR) forms a branching table which handles the different exceptions which occur during

the MCU operation. IVOR4 is the register used for interrupt handling.

The INTC module of the MPC5744P manages the ISR based on their programmable priorities

and triggers IVOR4 exceptions. The following figure details how an ISR is handled in a mode

called software mode (two ISR handling modes are proposed: hardware and software. Only

software mode is considered in this document).

The MPC5744P has up to 1024 ISR with 32 priority level (actually, some of them are

reserved and not accessible for users:

▪ 1008ISR are associated to peripherals (hardware (HW) triggered ISR)

▪ 16 ISR which can be configured by software (software (SW) triggered ISR)

BE électronique automobile 5e année ESPE

 28

Refer to Table 7-16 p 193 for the list of available ISR and the number of interrupt vector

associated to an interrupt source. For example, interrupt request triggered by time-out of

module Timer channel 0 (PIT_0) is associated to interrupt vector 226.

Tips: when you develop embedded code project with S32DS IDE, the list of interrupt vectors

can be found in the file intc_SW_mode_isr_vectors_MPC5744P.c, which is automatically

added in the project.

SW triggered ISR are dedicated to:

▪ In a multiprocessor context, interruption of a processor activity by another processor

▪ In a program launched by a high level ISR, if a part of the program has a lower level

priority, it is possible to suspend the execution of this part by a software ISR. It

improves the management of dead-lines of operation.

The priority of each ISR can be configured, with a level from 0 (lowest priority) to 31

(highest priority). Most of the HW triggered interrupts are maskable, i.e. it is possible to

inhibit the ISR transmission to the INTS by the peripheral, by setting an interrupt enable bit

(see configuration registers of each peripheral to know how to mask interrupt). Each time an

ISR is launched, a flag bit is set. One flag bit is associated to one ISR source. The flag bits are

in interrupt flag registers associated to the peripherals.

In order to associate an ISR coming from a peripheral or the software and a program to

process the ISR, an interrupt handler has to be defined. This interrupt handler writes the

address of the interrupt processing program at the interrupt vector address, and manages the

ISR priority. We will see how to deal with interrupt handler with hardware or software ISR in

the MPC5744P.

3. Enabling maskable interrupt

Maskable interrupt must be enabled at two levels: at local level (i.e. at peripheral level) by a

interrupt enable bit associated to ISR source, and at global level. In project developed with

S32DS, in order to enable ISR in the MCU, you can execute this routine in your program:

xcptn_xmpl ()

This function is defined in the source file MPC57xx__Interrupt_Init.c, which is automatically

added in a new project. This function initializes INTC and enable interrupt at global level.

4. Configuring hardware triggered interrupt

HW triggered interrupts are most of the time maskable interrupts, so the peripheral

configuration must enable ISR and the maskable interrupt must enabled at global level. INTC

configuration routines are implemented in several files: vector.c, MPC57xx__Interrupt_Init.c

and intc_SW_mode_isr_vectors_MPC5744P.c. They contain the routines used to execute the

ISR handling procedure.

In order to configure the interrupt handler, two operation must be done:

▪ 1. associate a ISR vector to an ISR routine, i.e. the user-defined function that will be

called when the interrupt is triggered.

▪ 2. define the priority level of the ISR

BE électronique automobile 5e année ESPE

 29

In project developed in S32DS, the link between the ISR routine and the ISR vector can be

done in the file intc_SW_mode_isr_vectors_MPC5744P.c, which lists all ISR vectors. Here is

an example with ISR related to Timer module PIT_0:

(uint32_t) &dummy, /* Vector # 226 Periodic Interrupt Timer (PIT_0) channel 0 PIT_0 */

(uint32_t) &dummy, /* Vector # 227 Periodic Interrupt Timer (PIT_0) channel 1 PIT_0 */

(uint32_t) &dummy, /* Vector # 228 Periodic Interrupt Timer (PIT_0) channel 2 PIT_0 */

(uint32_t) &dummy, /* Vector # 229 Periodic Interrupt Timer (PIT_0) channel 3 PIT_0 */

In the default configuration, the function dummy is called each time an ISR related to PIT_0 is

triggered. As its name indicates, this function defined in the file

intc_SW_mode_isr_vectors_MPC5744P.c does nothing in particular. Let suppose that you

enable the ISR related to time-out of PIT_0 channel 0 and that you have defined an ISR

routine PIT0_Ch0_isr, change the line associated to vector 226 in the following way:

(uint32_t) &PIT0_Ch0_isr, /* Vector # 226 Periodic Interrupt Timer (PIT_0) channel 0 PIT_0

*/

The priority level of each ISR source can be configured with the register PSR[n] of INTC,

where n is the number of the interrupt vector.

IX - Enhanced Direct Memory Access (eDMA)
Refer to chapter 22 for details about eDMA and to chapter 23 for DMA multiplexer

(DMA_MUX). Refer also to part 7.4.7 for integration of DMA within the system. When

DMA transfer concerns peripheral, some architectural principles about memory access in

Power architecture are required. This chapter will also provide some details about the crossbar

switch (XBAR) and the peripheral bridges (AIPS). Information about crossbar switch is

available in chapter 17 and also in part 7.4.7 for its architecture. Refer to chapter 19 for

information about peripheral bridge and part 7.4.5 for its architecture.

1. eDMA overview

eDMA is a DMA controller, which aims at managing memory transfer without CPU

intervention. Once configured and initiated, the DMA controller operates in parallel to the

Central Processing Unit (CPU), performing data transfers that would otherwise have been

handled by the CPU. This results in reduced CPU loading and a corresponding increase in

system performance. In a motor control application, DMA can be beneficial: numerous

analog-to-digital conversion are launched and data are transferred regularly to off-chip circuit

(e.g. MOS driver, speed/position sensors). Without DMA, CPU must initiate the data

read/write operation of ADC results and communication data. With DMA, the intervention of

CPU is not necessary to initiate the transfer. In Figure 12, DMA is illustrated through an

example of a source data writing in the transmission buffer of SPI bus.

BE électronique automobile 5e année ESPE

 30

Figure 12 - Illustration of DMA principle (from Freescale AN4765 - MPC57xx: Configuring and
Using the eDMA Controller)

MPC5744P implements two 32-channel DMA controllers: DMA_0 and DMA_1. DMA_1 is

implemented in delayed lockstep and is not visible to software. A DMA channel manages the

data transfer from one memory location to another. Each DMA channel is configurable by the

user. The DMA arbitrates channel service requests in two groups of 16 channels each:

▪ Group 1 contains channels 31-16

▪ Group 0 contains channels 15-0

DMA can be initiated from two request sources:

▪ software request, i.e. from a CPU request

▪ hardware request, from a peripheral.

As it will be explained in the following part, for software request, DMA configuration is quite

simple. However, for hardware request, several parts of the system may be configured

(DMA_MUX, AIPS, XBAR). The DMA multiplexer (DMA_MUX) is extremely important. It

aims at connecting the DMA hardware request sources to the DMA channel. Without

configuration of DMA_MUX, the hardware request cannot reach the eDMA module.

This device contains two DMA_MUX modules. DMAMUX_0 connects directly to DMA

channels 0-15. DMAMUX_1 connects directly to DMA channels 16-31.

Each DMA channel can be independently configured with the details of the transfer sequence

that is to be executed. These details are specified in the channel Transfer Control Descriptor

(TCD) registers.

eDMA transfers can be activated in three ways:

▪ 1. Events occurring in peripheral modules and off-chip can assert a DMA transfer

request

▪ 2. Software activation

▪ 3. Channel-to-channel linking—on completion of a transfer, one channel activates

another

Each channel can generate interrupts to indicate that it has partially completed or fully

completed a transfer. Interrupts can also be generated to indicate that a transfer error has

occurred.

BE électronique automobile 5e année ESPE

 31

2. eDMA architectural integration

Before explaining how to configure eDMA, it is necessary to give some explanation about

how memory access is managed in Power architecture microcontroller, especially when

attempt to read/write peripheral memory is done. Two modules are involved in this process:

the crossbar switch and the peripheral bridge.

a. Crossbar switch (XBAR)

To allow the eDMA, CPUs, and other masters to operate simultaneously, a multi-master bus

architecture is implemented in MPC5744P. The MPC57xx chips feature multiple bus masters:

for example, cores, Fast Ethernet Controller, and LFAST. The crossbar switch (XBAR) forms

the heart of this multi-master architecture. It links each master to the required slave device.

The crossbar switch connects bus masters and bus slaves using a crossbar switch structure, as

shown in Figure 13. This structure allows all bus masters to access different bus slaves

simultaneously, while providing arbitration among the bus masters when they access the same

slave. The multi-port Crossbar Switch concurrently supports up to 4 simultaneous connections

between master ports and slave ports. Data passes from one crossbar to the next if a master

requires access to a slave that is not on the same crossbar as itself.

If two or more masters attempt joint access to the same slave, an arbitration scheme

commences, eliminating the risk of bus contention. Both fixed-priority and round-robin

arbitration schemes are available.

Figure 13 - Multi-master bus architecture provided by the crossbar switch (from Freescale
AN4765 - MPC57xx: Configuring and Using the eDMA Controller)

The Crossbar Switch provides the following features:

▪ Four master ports and five slave ports, given in the figure below. For example, eDMA

is the master number 5. PBRIDGE 0 and PBRIDGE 1 will be discussed in the next

part. They will give access to peripheral memory.

▪ 32-bit Address, 64-bit Data paths (applies to all ports) with misaligned access

signaling

▪ Concurrent transfers between independent master and slave ports

▪ Programmable arbitration priorities on a per-slave port basis

▪ Round-robin arbitration available on a per-slave port basis

▪ Parking on slave ports: explicit master, park_on_last_master, none (low power parking)

BE électronique automobile 5e année ESPE

 32

Figure 14 - Crossbar switch integration (MPC5744PRM.pdf - p. 186 – Fig. 7-1)

The crossbar switch and interaction between bus masters and slave devices is illustrated in a

simplified version in the figure below. In this example, the eDMA controller is accessing one

of the peripherals on the IP bus while the CPU is concurrently accessing the SRAM memory.

The crossbar switch has formed the appropriate connections for this situation. Two scenarii

are illustrated:

▪ software request: the core sends a software DMA request to the DMA engine. The

DMA access to the SRAM memory as a master of XBAR switch. If the targeted data

corresponds to a memory location associated to peripheral, the peripheral bridge

(AIPS) serves as interface between the memory and the XBAR switch.

▪ hardware request: the hardware DMA request is directed to the DMA channel by the

DMA_MUX. As in the previous case, the DMA engine is the master of the XBAR

switch. As the peripheral request an access to its memory, AIPS must be configured to

authorize read/write access.

BE électronique automobile 5e année ESPE

 33

When a master accesses the crossbar switch, the access is immediately taken. If the targeted

slave port of the access is available, then the access is immediately presented on the slave port.

Single-clock or zero-wait-state accesses are possible through the crossbar. If the targeted slave

port of the access is busy or parked on a different master port, the requesting master simply

sees wait states inserted until the targeted slave port can service the master's request. The

latency in servicing the request depends on each master's priority level and the responding

slave's access time.

Because the crossbar switch appears to be just another slave to the master device, the master

device has no knowledge of whether it actually owns the slave port it is targeting. While the

master does not have control of the slave port it is targeting, it simply waits.

Arbitration settings for the crossbar switch can be configured in the XBAR module registers.

When operating in fixed-priority mode, each master is assigned a unique priority level in the

priority registers (PRSn). If two masters request access to the same slave port, the master with

the highest priority in the selected priority register gains control over the slave port. If an

attempt is made to program multiple master ports with the same priority level within the

priority registers (PRSn), the crossbar switch responds with a bus error.

In most of cases, no initialization is required for the crossbar switch. By default, fixed-priority

mode is configured and default priority is given to the different master. Hardware reset

ensures all the register bits used by the crossbar switch are properly initialized to a valid state.

However, settings and priorities may be programmed to achieve maximum system

performance. It is outside the scope of this document.

b. Peripheral bridge (AIPS-lite)

The peripheral bridge (PBRIDGE or AIPS or IPS bus) modules are used to access the

registers of most of the modules on this device. The peripheral bridge functions as a bus

protocol translator between the crossbar switch and the slave peripheral bus. The peripheral

bridge manages all transactions destined for the attached slave devices and generates select

signals for modules on the peripheral bus by decoding accesses within the attached address

space.

This device contains two identical peripheral bridge instances (PBRIDGE0 or AIPS0, and

PBRIDGE1 or AIPS1). The peripheral bridge occupies 64 MB of the address space, which is

divided into peripheral slots of 16 KB. The bridge includes separate clock enable inputs for

each of the slots to accommodate slower peripherals.

Tips: the clocks PBRIDGE0_clk and PBRIDGE1_clk are dedicated to PBRIDGE0 and

PBRIDGE1. These clocks are derived from SYSCLK after a configurable prescaler. The

frequency of these clocks must not exceed 50 MHz.

The slave devices connected to the peripheral bridge are modules which contain a

programming model of control and status registers. The system masters read and write these

registers through the peripheral bridge. The register maps of the peripherals are located on 16

KB boundaries. Each peripheral is allocated one or more 16-KB block(s) of the memory map.

Each Peripheral Bridge's MPRA register (Master Privilege Register A) contains fields for

each Crossbar Switch master on the chip. It defines the access-privilege level associated with

a bus master in the device to various peripherals: master n trusted for read and/or write. By

BE électronique automobile 5e année ESPE

 34

default, only accesses from master 0 (the core) have read and write privileges. Thus, in order

to give privilege to DMA to access to peripheral bridge, the register MPRA must be set.

The peripherals attached to the peripheral bridges each are assigned to a memory map slot that

corresponds to a peripheral bridge register field. Every on-platform peripheral has an assigned

PACRn field within the PACRA to PACRH registers, and every off-platform peripheral has

an assigned OPACRn field within the OPACRA to OPACRAF registers. These registers

define the access level supported by the module:

▪ Supervisor protect: Determines whether the peripheral requires supervisor privilege

level for accesses

▪ Write protect: Determines whether the peripheral allows write access

▪ Trusted protect: determines whether the peripheral allows accesses from an untrusted

master

In order to configure the privilege access to the memory associated to the different

peripherals, the peripheral slot assignment to the PACR and OPACR is required. The

following tables provide the peripheral slot assignments for this device.

BE électronique automobile 5e année ESPE

 35

BE électronique automobile 5e année ESPE

 36

For most off-platform peripherals (e.g. CTU, ADC, …), write accesses are allowed by default.

Thus, the default configuration can be used for DMA access to these peripheral registers.

c. DMA multiplexer (DMA_MUX)

The DMA multiplexer (DMA_MUX) performs the task of routing the peripheral DMA

request sources to the desired DMA channel of eDMA module. It also provides the ability to

gate a transfer request with the Periodic Interrupt Controller (PIT), on selected MUX

implementations.

The DMA multiplexer is used to route the numerous peripheral DMA sources to individual

DMA channels. The Direct Memory Access Multiplexer (DMAMUX) routes DMA sources,

called slots, to any of the 16 DMA channels. Up to 27 peripheral slots and up to six always-on

slots can be routed to 16 channels. 16 independently selectable DMA channel routers, with

the first four channels additionally provide a trigger functionality. Each channel router can be

assigned to one of the possible peripheral DMA slots or to one of the always-on slots.

There are three operation modes:

▪ disabled: the DMA channel is disabled (after reset or for reconfiguration). It may also

be used to temporarily suspend a DMA channel while reconfiguration of the system

takes place (for example, changing the period of a DMA trigger).

▪ normal: DMA source is routed directly to the specified DMA channel. The operation

of the DMAMUX in this mode is completely transparent to the system.

▪ periodic trigger mode: a DMA source may only request a DMA transfer, such as when

a transmit buffer becomes empty or a receive buffer becomes full, periodically.

Configuration of the period is done in the registers of the periodic interrupt timer (PIT).

This mode is available only for channels 0–3.

Figure 15 - DMA_MUX block diagram (MPC5744PRM.pdf - p. 740 – Fig. 23-1)

BE électronique automobile 5e année ESPE

 37

The following tables define the mapping of the DMA_MUX source slots to the DMA

hardware request sources on the device.

BE électronique automobile 5e année ESPE

 38

The DMA_MUX also provides a number of “always enabled” request sources that can be

used in periodic trigger mode. These permit transfers to be initiated based only on the PIT.

The DMA channel triggering capability allows the system to schedule regular DMA transfers,

usually on the transmit side of certain peripherals, without the intervention of the processor.

This trigger works by gating the request from the peripheral to the DMA until a trigger event

has been seen. After the DMA request has been serviced, the peripheral will negate its request,

effectively resetting the gating mechanism until the peripheral reasserts its request and the

next trigger event is seen. This means that if a trigger is seen, but the peripheral is not

requesting a transfer, then that trigger will be ignored.

Each of the DMA channels can be independently enabled/disabled and associated with one of

the DMA slots (peripheral slots or always-on slots) in the system, through the configuration of

Channel Configuration registers CHCFGn (n = 0..15).

Tips: Setting multiple CHCFG registers with the same source value will result in

unpredictable behavior. This is true, even if a channel is disabled (ENBL==0). Before

changing the trigger or source settings, a DMA channel must be disabled via

CHCFGn[ENBL].

BE électronique automobile 5e année ESPE

 39

Configuration of the DMAMUX is intended to be a static procedure done during execution of

the system boot code. The configuration of the DMA_MUX can be changed during the

normal operation of the system.

3. Activating eDMA transfer

Events occurring within other peripheral modules can be enabled to activate eDMA transfers.

In many modules, event flags can be asserted as either eDMA or interrupt requests. Due to the

high number of sources for those requests, a configurable multiplexer (DMA_MUX) is

implemented to route peripheral DMA requests to DMA channels.

Channels may also be activated by software. The channels’ TCDs provide a START bit that

activates the channel when asserted. This makes it possible to activate each channel in

software.

Channel linking provides the means for one channel to assert the START bit of another

channel. The linked channel can be activated at stages of the transfer or on completion of the

transfer. More details about the transfer process are given in the next part.

4. Transfer process

a. Handling multiple transfer requests

Only one channel can actively perform a transfer at a given time. Therefore, to handle

multiple pending transfer requests the eDMA controller offers channel prioritization. Fixed-

priority or round-robin prioritization can be selected.

In the fixed-priority scheme, each channel is assigned a priority level. When multiple requests

are pending, the channel with the highest priority level performs its transfer first. By default,

fixed priority arbitration is implemented, with each channel being assigned a priority level

equal to its channel number. Other priority levels can be assigned if required. Higher priority

channels can preempt lower priority channels. Preemption occurs when a channel is

performing a transfer while a transfer request is asserted to a channel of a higher priority. In

this case, the lower priority channel halts its transfer and allows the channel of higher priority

to carry out its transfer. The lower priority channel then resumes its transfer when the higher

priority channel has completed its transfer. One level of preemption is supported. Preemption

is an option and must be enabled on a per-channel basis if required.

In round-robin mode, the eDMA cycles through the channels in order (from high to low

channel number), checking for a pending request and without regard to priority. When a

channel with a pending request is reached, it is allowed to perform its transfer. When the

transfer has been completed, the eDMA continues to cycle through the channels looking for

the next pending request.

Arbitration within each group (group 0 = channel 15-0 and group 1 = channel = 31-16) is set

according to fixed-priority or round-robin mode. The group priorities operate in a similar

fashion. In group fixed priority arbitration mode, channel service requests in the highest

priority group are executed first, where priority level 1 is the highest and priority level 0 is the

lowest. The group priorities are assigned in the GRPnPRI fields of the DMA Control Register

(CR). All group priorities must have unique values prior to any channel service requests

occurring; otherwise, a configuration error will be reported. For group round robin arbitration,

BE électronique automobile 5e année ESPE

 40

the group priorities are ignored and the groups are cycled through (from high to low group

number) without regard to priority.

b. Major and minor transfer loops

During DMA transfer, data are sent by packets according to a scheme made of a certain

number of loops. Each time a channel is activated and executes, a number of bytes,

“NBYTES,” are transferred from the source to the destination. This is referred to as a minor

transfer loop. A major transfer loop consists of a number of minor transfer loops. This number

is specified within the TCD registers. As iterations of the minor loop are completed, the

current iteration counter (CITER) in TCD field is decremented. When the current iteration

field has been exhausted, the channel has completed a major transfer loop. Figure 16 shows

the relationship between major and minor loops. In this example, a channel is configured so

that a major loop consists of three iterations of a minor loop. The minor loop is configured to

be a transfer of 4 bytes.

Figure 16 - Major and minor loop transfer (from Freescale AN4765 - MPC57xx: Configuring and
Using the eDMA Controller)

The channel performs a selection of tasks upon completion of each minor and major transfer

loop. On completion of the minor loop, excluding the final minor loop, the eDMA carries out

the following tasks:

▪ Each time source data is transferred, updating the source address by adding the current

source address to the signed source offset: SADDR = SADDR + SOFF. Source

address is updated automatically as transfers are performed. On completion of the

minor loop, the source address contains source address for the last piece of data that

was read in the minor loop; offset is added to this value.

▪ Updating the destination address by adding the current destination address to the

signed destination offset: DADDR = DADDR + DOFF. It is done in a similar way as

source address updating.

▪ Decrementing the current iteration (CITER) counter

▪ Updating channel status bits and requesting (enabled) interrupts

▪ Asserting the start bit of the linked channel upon completion of minor loop, if channel

linking is enabled

On completion of the major/final minor loop, the eDMA performs the following tasks:

▪ Updating source address by adding the current source address to the last source

address adjustment: SADDR = SADDR + SLAST

BE électronique automobile 5e année ESPE

 41

▪ Updating destination address by adding the current destination address to the last

destination address adjustment: DADDR = DADDR + DLAST

▪ Updating the channel status bits and requesting (enabled) interrupts

▪ Asserting the start bit of the linked channel upon completion of minor loop, if channel

linking is enabled

▪ Reloading current iteration (CITER) from the beginning major iteration count (BITER)

field

5. Block diagram

A TCD is attributed to each DMA channel. It is the main part that has to be configured by the

user. It sets the source and destination address of the data to transfer, the number of data

exchange in minor loop, the number of minor loops in a major loop … The eDMA engine

manages the DMA request from the peripherals and data transfer into the memory.

Figure 17 - eDMA block diagram (MPC5744PRM.pdf - p. 632 – Fig. 22-1)

The general characteristics of the transfer (e.g. arbitration parameters) are supported by the

eDMA engine and are configured by the CR register. For user, the most important

configuration part consists in setting the TCD registers, which define the DMA transfer

parameters associated to a DMA channel. The organization of TCD register is given in the

next part.

a. Transfer Control Descriptors (TCD)

All transfer attributes for a channel are defined in the channel’s unique TCD. Each TCD is

stored in the eDMA controller’s local SRAM. Only the DONE, ACTIVE, and STATUS fields

are initialized at reset. All other TCD fields are undefined at reset and must be written to by

software before the channel is activated. Failure to do this will result in unpredictable

behavior of the channel. The following figure shows the TCD memory map.

BE électronique automobile 5e année ESPE

 42

The following table describes the TCD’s elements and their functions.

Field Description
SADDR[31:0] Source address: start of the memory address of the transfer source data. As the eDMA

performs transfers, this field is automatically updated for the next transfer.

SMOD[4:0] and

DMOD[4:0]

Source and destination address modulo: in order to create a circular buffer

SSIZE[2:0] and

DSIZE[2:0]

Source and destination Data Transfer Size: it defines the read data format (8, 16 or 32

bits)

SOFF[15:0] Source Address Signed Offset: signed offset (in terms of actets) that is added to the

current source address, after a data has been transferred, to calculate the new source

address value.

DOFF[15:0] Destination Address Signed Offset: signed offset (in terms of actets) that is added to the

current destination address, after a data has been transferred, to calculate the new

destination address value.

NBYTES[31:0]/

[31:2]/[31/22]

Minor Byte Transfer Count: number of bytes to be transferred upon each activation of

the channel. Length of the field varies depending on enabling/disabling minor offset.

SMLOE[1:0] and

DMLOE[1:0]

Source/Destination Minor Loop Offset Enable

MLOFF[21:2] If SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the

source or destination address to form the next-state value after the minor loop

completes.

SLAST[31:0] Last Source Address Adjustment. Signed offset that is added to the source address upon

completion of the major loop, to calculate the new source address value. It can be used

to restore the source address to the original value or to adjust the source address to the

next data structure.

DADDR[31:0] Destination Address. Memory address of the transfer destination. As the eDMA

performs transfers, this field is automatically updated for the next transfer.

CITER_E_LINK Enable Channel Linking on Completion of a minor loop .

This field must be equal to the BITER_E_LINK field or a configuration error will be

reported.

CITER_LINKCH[5:0] Minor Loop Complete Link Channel. As the channel completes a minor loop, it asserts

BE électronique automobile 5e année ESPE

 43

the START bit of the channel defined in CITER_LINKCH[5:0].

CITER[14:0] or

CITER[8:0]

Current Iteration Count. Represents the current number of minor loops that are to be

executed to complete the major loop. As minor loops are completed, this field is

decremented until it is exhausted. When it is exhausted, a major loop is complete. Upon

completion of a major loop, the field is reloaded with the value contained in the BITER

field.

DLASTSGA[31:0] Last Destination Address Adjustment or Memory Address for the Next TCD. If

Scatter/Gather is disabled (ESG = 0), then the value contained in this field performs the

same task as the SLAST field for the destination address.

BITER_E_LINK Beginning Enable Channel Linking on Minor Loop Complete. When a major loop is

completed, this field is used to reload the CITER_E_LINK field. Hence, when writing

the BITER_E_LINK and CITER_E_LINK they must be configured to the same value.

BITER_LINKCH[5:0] Beginning Minor Loop Complete Link Channel. When a major loop is completed, this

field is used to reload the CITER_LINKCH field. Hence, when configuring the

BITER_LINKCH and CITER_LINKCH they must be configured to the same value.

BITER[14:0] or

BITER[8:0]

Beginning Major Iteration Count. When a major loop is completed, this field is used to

reload the CITER field in preparation for the next channel activation. When

configuring the BITER and CITER fields, they should be configured to the same value.

BWC[1:0] Bandwidth Control. Provides a means of controlling the amount of bus bandwidth the

eDMA uses.

MAJORLINKCH[5:0] Major Loop Complete Link Channel. As the channel completes a major loop—and

channel linking on completion of a major loop is enabled (MAJORELINK = 1)—the

START bit of the channel defined in MAJORLINKCH[5:0] is asserted.

DONE Channel Done. This bit is set when the channel completes a major loop. It remains set

until the channel is reactivated by a transfer request or it is cleared by software.

ACTIVE Channel Active. This bit is set if the channel is performing a transfer. It is set when a

minor loop transfer is started and it is cleared, by the hardware, when that minor loop is

complete.

MAJORELINK Enable Channel Linking on Completion of a Major Loop

ESG Enable Scatter/Gather Processing

DREQ Disable Request. If set when the channel completes a major loop, the eDMA clears the

corresponding DMAERQ, disabling the transfer request.

INTHALF Generate Interrupt when Major Loop is Half-Complete. When CITER = BITER ÷ 2,

the eDMA asserts an interrupt request in the DMAINT register.

INTMAJOR Generate an Interrupt on Completion of a Major Loop. When CITER = 0, the eDMA

asserts an interrupt request in the DMAINT register

START Channel Start. Writing this bit as a 1 explicitly activates the channel and a minor loop

transfer is performed. It is used only for software request.

If a channel’s TCD descriptor is configured with an illegal value or an illegal combination of

values, a channel error will be reported in the DMAERR register.

6. Configuring the eDMA

To configure the eDMA, the following initialization steps have to be performed:

1. Program the Control Register (CR). This step is necessary only if a configuration other than

the default is required. Writes to the CR register must be performed only when the DMA

channels are inactive (when TCDn_CSR[ACTIVE] bits are cleared). This register aims at

configuring group priority (GRPnPRI), minor loop enable, fixed-priory or round-robin

arbitration at channel and group level.

BE électronique automobile 5e année ESPE

 44

2. Configure Channel Priority Registers (DCHPRI[x]). This step is necessary only if a

configuration other than the default is required. the contents of these registers define the

unique priorities associated with each channel within a group. The channel priorities are

evaluated by numeric value; for example, 0 is the lowest priority, 1 is the next higher priority,

then 2, 3, etc. Software must program the channel priorities with unique values; otherwise, a

configuration error is reported. The range of the priority value is limited to the values of 0

through 15. Channel preemption can be enabled or disabled.

3. Enable error interrupts using either the DMAEEI or DMASEEI register. This step is

necessary only if a configuration other than the default is required.

4. Write the Transfer Control Descriptors (TCD[n]) for all channels that will be used.

5. Enable any hardware service requests via the ERQ registers (only for DMA requested by

peripherals, not required for software requests), or via the SERQ register that offers

alternative methods to enable DMA requests.

6. Request channel service via either:

▪ Software: setting the TCDn_CSR[START]

▪ Hardware: slave device asserting its eDMA peripheral request signal

7. Configure the appropriate peripheral module and configure the DMA_MUX to route the

activation signal to the appropriate channel

If default priority parameters of crossbar switch are not sufficient, the XBAR.PRS[n] register

may be modified. The default configuration should be sufficient for most of applications.

For hardware requests, DMA will access to memory slots associated to peripherals. By default,

only the core has privilege to read and write to the peripheral memory, not the DMA. Thus,

the write privilege of this master must be changed. In order to provide read/write access

privilege to all the masters of AIPS0 and 1, you may write the following instructions:
 AIPS_0.MPRA.R |= 0x77777770; /* All masters have RW & user level access */
 AIPS_1.MPRA.R |= 0x77777770; /* All masters have RW & user level access */

BE électronique automobile 5e année ESPE

 45

X - Motor control modules

In the MPC5744PRM reference manual, several peripherals such as ADC and PWM are

gathered in a category called motor control modules. The reason is that motor control is

usually PWM driven and that required current/voltage measurements must be synchronized

with PWM signals.

Synchronization between PWM signal generation and ADC channel acquisition can be done

by software by using ISR. However, this solution has two major drawbacks for motor control

applications:

▪ compared to hardware synchronization, the added delay is long and could be excessive

when motor speed is high.

▪ the CPU is involved, so less time is dedicated to update the motor command

parameters. Once again, it may become critical when motor speed is high.

That's why ADC channel acquisition can be synchronized by PWM through hardware

mechanisms, without any intervention of the CPU. A specific peripheral called Cross

Triggering Unit (CTU) is used to configure the synchronization between PWM and ADC. In

the next parts, the peripherals FlexPWM, CTU and ADC are described. Not all the

functionalities are detailed, only the most important for three-phase motor control applications.

XI - FlexPWM module
Refer to Chapters 40 – Motor Control Pulse Width Modulator Module (FlexPWM) for the

principles and the configuration of FlexPWM.

1. Presentation - Overview

The microcontroller MPC5744P includes two FlexPWM modules (FlexPWM0 and

FlexPWM1). Each module is formed by 4 submodules (0 to 3) which can generate two

outputs (A and B) plus one auxiliary output (X). The four submodules can operate

independently. In motor application, output A is related to the command of the top transistor

of one leg of the inverter, while output B commands the bottom transistor, as described in

Figure 18.

Outputs A and B can be generated independently or complementarily. Period and duty cycles

can be configured with a 16 bit resolution. Programmable dead time can be inserted on rising

and falling edges when output pairs A and B operates in complementary mode.

Most of the configuration registers are double-buffered to ensure that all the registers will be

updated simultaneously by a reload signal triggering. Moreover, submodule 0 is able to

produce the reload signal for the three other submodules. In three-phase motor control, the

duty cycle of PWM signals sent to three legs of the inverter is updated regularly. This reload

functionality is mandatory to ensure that the duty cycles of the PWM signal are updated

simultaneously. FlexPWM proposes different reload strategies.

Each submodule can generate output triggers, that can be used by CTU to trigger ADC.

BE électronique automobile 5e année ESPE

 46

Figure 18 - Typical three-phase inverter and PWM signals

Figure 19 presents a block diagram of a FlexPWM module. The I/O pins of the module are:

▪ PWMA and PWMB are the output pins of the PWM channels. They can be

independent PWM signals or form a complementary pair

▪ PWMX is the auxiliary output pins of the PWM channel. Its timing parameters cannot

be set

▪ Faults[n] are input pins for disabling selected PWM outputs

▪ EXT_SYNC input signal allows a source external to the PWM to initialize the PWM

counter. In this manner the PWM can be synchronized to external circuitry.

▪ EXT_FORCE input signal allows a source external to the PWM to force an update of

the PWM outputs. In this manner the PWM can be synchronized to external circuitry.

▪ EXTA[n] and EXTB[n] - Alternate PWM Control Signals pins allow an alternate

source to control the PWMA and PWMB outputs

▪ OUT_TRIG0[n] and OUT_TRIG1[n] outputs allow the PWM submodules to control

timing of the ADC conversions

▪ EXT_CLK - External Clock Signal: This on-chip input signal allows an on-chip

source external to the PWM (typically a Timer) to control the PWM clocking. In this

manner the PWM can be synchronized to the Timer. This signal must be generated

synchronously to the PWM's clock since it is not resynchronized in the PWM.

In the block diagram, the submodule 0 is specific because it produces several signals that can

be used by the other submodules, in order to synchronize them on Submodule 0 if necessary:

▪ Master Sync: the PWM signal generation is based on comparison between the value of

a counter and the content of several configuration registers. At each PWM cycle, the

counter is reinitialized by an initialization signal (Init). It can be local or delivered by

submodule 0 (Master Sync).

▪ Master Reload: the reload signal controls the reload logic, used to control double

buffering of configuration registers. The reload signal of submodule 0 can be used by

the other submodule to synchronize the updating of parameters of the different

submodules.

▪ Master Force: the update of output signals PWMA and PWMB is triggered by a force-

out signal. In order to synchronize the update of the outputs of all the submodules, the

force-out signal of submodule 0 can be used as force-out signal for the other

submodules (Master Force).

▪ AuxClock: the clock source of submodule 0 can be used as clock source for the other

submodules

BE électronique automobile 5e année ESPE

 47

Figure 19 - Block diagram of FlexPWM module (MPC5744PRM.pdf - p. 1124 – Fig. 40-1)

A more detailed block diagram of a submodule is shown below. More details about its

operation will be given in the next parts. They are identical for all the submodules, except for

submodule 0 which is able to deliver several master signals for the other submodules.

Figure 20 - Detailed block diagram of one submodule of FlexPWM (MPC5744PRM.pdf - p. 1125 –
Fig. 40-2)

BE électronique automobile 5e année ESPE

 48

2. Functional details

a. PWM clocking

Clock source of each submodule may be configured independently. By default, the peripheral

clock is used, which is MOTC clock. Its selection and configuration are done at the Aux clock

selector 0. Two other clock sources can also be used: an external clock signal (Ext_clk) or the

clock used in submodule 0 (Aux_clk). This clock is then divided by a 8 bit prescaler (division

ratio from 1 to 128). This divided clock is used to synchronize a 16 bit counter which is used

to shape PWM signals.

Figure 21 - Clocking block diagram of each submodule of FlexPWM (MPC5744PRM.pdf - p. 1180
– Fig. 40-13)

b. Counter synchronization

The counter counts from an initial value contained in a register INIT, up to a maximum value

stored in a register VAL1. The comparison between VAL1 and counter value causes a rising

edge to occur on the Local Sync signal which is one of four possible sources used to cause the

16-bit counter to be initialized with INIT. Thus, VAL1 sets the PWM period in terms of

submodule clock cycles. One counter cycle is equal to one PWM cycle.

The counter can also be initialized by submodule 0's Master reload or Master Sync signals,

and an external synchronization signal (EXT_SYNC). The counter can optionally initialize

upon the assertion of the FORCE_OUT signal assuming that the FORCE_EN bit is set,

regardless of which signal is selected as the counter init signal.

Figure 22 - Submodule counter initialization (MPC5744PRM.pdf - p. 1180 – Fig. 40-13)

The timing profile of PWMA and PWMB signals is also defined by a comparison between the

counter value and 5 other registers (VAL0, VAL2, VAL3, VAL4 and VAL5). They will be

defined later.

BE électronique automobile 5e année ESPE

 49

c. Register reload

In motor control, the PWM parameters (e.g. frequency, pulse width) are recalculated

continuously. When several legs are controlled, these parameters must be updated

synchronously. The register reload block diagram is illustrated below.

In FlexPWM, the signal LDOK is used to generate the local reload signal in each submodule.

LDOK allows software to finish calculating all of these PWM parameters so they can be

synchronously updated. SUBn_CTRL1[PRSC], SUBn_INIT and SUBn_VALx are loaded by

software into a set of outer buffers. When LDOK is set, these values are transferred to an

inner set of registers at the beginning of the next PWM reload cycle to be used by the PWM

generator. After loading, LDOK is automatically cleared.

The reload can be also triggered by the Master Reload signal, delivered by submodule 0.

Figure 23 - Register reload logic (MPC5744PRM.pdf - p. 1181 – Fig. 40-14)

FlexPWM proposes also several configurable reload strategies. The reload can be done every

N PWM cycles, where N = 1 to 16, as illustrated below. The reload frequency is set by the

bits LDFQ in CTRL1 register. The LDFQ bits take effect at every PWM reload opportunity,

regardless the state of the LDOK bit. A reload opportunity occurs either at the end of a PWM

cycle (bit FULL set) or at half of a PWM cycle (bit HALF set). If both HALF and FULL are

set, a reload opportunity occurs twice per PWM cycle when the count equals VAL1 and when

it equals VAL0.

At every reload opportunity, the PWM Reload Flag (RF) in the FlexPWM_SUBn_STS

register is set. Setting RF happens even if an actual reload is prevented by the LDOK bit. If

the PWM reload interrupt enable bit RIE is set, the RF flag generates CPU interrupt requests

allowing software to calculate new PWM parameters in real time. When RIE is not set,

reloads still occur at the selected reload rate without generating CPU interrupt requests.

Whenever either SUBn_VALx or SUBn_CTRL1[PSRC] is updated, the RUF flag is set to

indicate that the data is not coherent. RUF will be cleared by a successful reload which

consists of the reload signal while LDOK is set. If RUF is set and LDOK is clear when the

BE électronique automobile 5e année ESPE

 50

reload signal occurs, a reload error has taken place and the REF bit is set. If RUF is clear

when a reload signal asserts, then the data is coherent and no error will be flagged.

d. PWM generation

Figure 24 illustrates how PWM generation is performed in each submodule. In each case,

comparators and associated VALx (x = 0 ..5) registers are utilized to define the timing profile

of PWM signals. These 16-bit register contains a number of submodule clock cycles. It is

important to underline that the value are signed. As it will be shown later, it can facilitate the

computation of PWM parameters. The registers are:

▪ VAL0 defines the mid-point of the PWM cycle. It is used to launch the reload at half

PWM cycle

▪ VAL1 defines the last value of the counter and thus the PWM period. It is used to

launch the reload at full PWM cycle

▪ VAL2 and VAL3 define respectively the position of rising and falling edge of PWMA

signal (except in complementary mode, as explained later). The internal signal

responsible of the generation of PWM output is called PWM23. VAL2 defines the

count value to set PWM23 high. VAL3 defines the count value to set PWM23 low.

▪ VAL4 and VAL5 define respectively the position of rising and falling edge of PWMB

signal (except in complementary mode, as explained later). The internal signal

responsible of the generation of PWM output is called PWM45. VAL4 defines the

count value to set PWM45 high. VAL5 defines the count value to set PWM45 low.

Figure 24 - PWM generation block diagram (MPC5744PRM.pdf - p. 1181 – Fig. 40-14)

All the comparators can also generate an interrupt or an output trigger signal for ADC

acquisition.

The initial values delivered by PWMA, PWMB and PWMX outputs are defined by

PWM23_INIT, PWM45_INIT and PWMX_INIT respectively.

BE électronique automobile 5e année ESPE

 51

e. PWM alignment

Depending on the configuration of VALx register, different alignments of PWM signal pairs

are possible. Below, three alignments are described. The value in these registers are in 2's

complement format. It is advised to use signed number to facilitate the PWM configuration.

In 2's complemented values, bipolar PWM control is possible, where a duty cycle less than

50 % leads to a negative load voltage. Thus, there is a direct relation between the voltage and

the turn off edge value.

Center aligned PWM

The edges of each PWM signals are controlled independently and are centered in the PWM

cycle. In 2's complement format, the midpoint VAL0 is set to 0. The initial and final value of

the counters are provided by INIT and VAL1 registers. They contain the same modulus (equal

to half the PWM period) but with opposite signs.

Two values are specified to set the position of the turn-on (VAL2 and VAL4) and turn-off

(VAL3 and VAL5) edges. Once again, in 2's complement format, they contain the same

modulus (equal to half of the duty cycle) but with opposite signs.

Edge aligned PWM

The turn-on of each pulse is specified by the INIT value. VAL2 and VAL4 are equal to INIT.

Only the turn-off edge values (given by VAL3 and VAL5) needs to be periodically updated to

change the pulse width.

BE électronique automobile 5e année ESPE

 52

Phase shifted PWM

The values VAL2, VAL3, VAL4 and VAL5 define offsets on the turn-on and turn-off edges

of different PWM signals, resulting in a phase shift between PWM signals.

f. Independent or complimentary channel operation

Each PWM output is controlled by its own VALx pair operating independently of the other

output. Writing a logic one to the INDEP bit of the CNFG register configures the pair of

PWM outputs as two independent PWM channels. Writing a logic zero to the INDEP bit

configures the PWM output as a pair of complementary channels. The PWM pins are paired

in complementary channel operation as shown in Figure 25.

The polarity is related to which signal is connected to the output pin (PWM23 or PWM45). It

is determined by the IPOL bit. While in the complementary mode, a PWM pair can be used to

drive top/bottom transistors, as shown in the figure above. When the top PWM channel is

active, the bottom PWM channel is inactive, and vice versa.

Figure 25 - Complementary channel logic (MPC5744PRM.pdf - p. 1186 – Fig. 40-18)

The complementary channel operation is for driving top and bottom transistors in a motor

drive circuit, such as the one in the following figure. Complementary operation allows the use

of the deadtime insertion feature.

g. Deadtime insertion

To avoid short circuiting the DC bus and endangering the transistor, there must be no overlap

of conducting intervals between top and bottom transistor. However, the transistor's

characteristics may cause its switching-off time to be longer than its switching-on time. To

avoid the conducting overlap of top and bottom transistors, deadtime needs to be inserted in

the switching period.

BE électronique automobile 5e année ESPE

 53

Figure 26 shows the deadtime insertion logic of each submodule which is used to create non-

overlapping complementary signals when not in independent mode.

Figure 26 - Deadtime insertion logic (MPC5744PRM.pdf - p. 1188 – Fig. 40-20)

The deadtime generators automatically insert software-selectable activation delays into the

pair of PWM outputs. The deadtime registers (DTCNT0 and DTCNT1) specify the number of

peripheral clock cycles to use for deadtime delay in PWMA and PWMB respectively. Every

time the deadtime generator inputs change state, deadtime is inserted. Deadtime forces both

PWM outputs in the pair to the inactive state. In practice, the deadtime values have to be

tuned experimentally.

BE électronique automobile 5e année ESPE

 54

h. Output logic

A specific logic controls the state of the PWM outputs, to set its polarity and prevent

generating faulty signals. Figure 27 shows the output logic of each submodule including how

each PWM output has individual fault disabling, polarity control, and output enable.

Figure 27 - PWM output logic (MPC5744PRM.pdf - p. 1193 – Fig. 40-25)

The PWM23 and PWM45 signals are output from the deadtime logic and are positive true

signals. In other words, a high level on these signals should result in the corresponding

transistor in the PWM inverter being turned ON. The voltage level required at the PWM

output pin to turn the transistor ON or OFF is a function of the logic between the pin and the

transistor. Therefore, it is imperative that the user programs the POLA and POLB bits in the

register OCTRL before enabling the output pins. PWMA and PWMB are in tristate until the

PWMA_EN or PWMB_EN bits are set. A fault condition can result in the PWM output being

tristated, forced to a logic 1, or forced to a logic 0 depending on the values programmed into

the PWMxFS fields.

i. ADC triggering

In cases where the timing of the ADC triggering is critical, it must be scheduled as a hardware

event instead of software activated. With this PWM module, multiple ADC triggers can be

generated in hardware per PWM cycle without the requirement of another timer module.

There are two output trigger signal per submodule (OUT_TRIG0 and OUT_TRIG1).

The following figure shows how this is accomplished. When specifying complimentary mode

of operation, only two edge comparators are required to generate the output PWM signals for

a given submodule. This means that the other comparators are free to perform other functions.

VAL0, VAL2, and VAL4 can be used to generate OUT_TRIG0 and VAL1, VAL3, and

VAL5 can be used to generate OUT_TRIG1. The OUT_TRIGx signals are only asserted as

long as the counter value matches the VALx value. Therefore up to six triggers can be

generated (three each on OUT_TRIG0 and OUT_TRIG1) per PWM cycle per submodule.

The selection of the VALx register to produce output trigger signal is done by the bits

OUT_TRIG_EN in the TCTRL register.

BE électronique automobile 5e année ESPE

 55

3. PWM configuration

PWM signal requires an output pad, so that the MSCR register of this I/O pad must be

carefully configured (refer to part VII of this document). The alternate function has to be

selected by the SSS bit field. It is not necessary to activate the output buffer of the I/O, since

the pad is connected to the output flip-flop of the unified PWM channel.

Moreover, the peripheral clock for FlexPWM (MOTC or Auxiliary clock 0 - Divider 0) must

be activated and configured correctly.

a. Control registers

There are two control registers per sub-modules: CTRL1 and CTRL2. They configure the

submodule clock, reload strategy, initialization source, force-out source …

The clock configuration is made by the bits CLK_SEL (selection of clock source) and PRSC

(prescaler value, from 20 to 27). The reload source (local or master reload) is selected by

RELOAD_SEL . The reload frequency defined in PWM cycle numbers is set by LDFQ.

BE électronique automobile 5e année ESPE

 56

HALF and FULL bits set if the reload occurs at half or at the end of PWM cycle. The bit

LDMOD defines if the PWM parameters takes effect at the next PWM cycle when LDOK is

set or immediately after LDOK is set.

INDEP sets if the PWM pair runs in independent or complementary mode. PWM23_Init,

PWM45_Init and PWMX_Init define the intial values for PWM23, PWM45 and PWMX.

DBGEN enables the PWM to run when the chip is in debug mode.

INIT_SEL defines which source can initialize the counter, between PWMX, Master reload or

Master Sync from Submodule0, or EXT_SYNC signal.

b. Configuration of PWM signal parameters

The register INIT defines the initial count value for the PWM in PWM clock periods. This is

the value loaded into the submodule counter when local sync, master sync, or master reload is

asserted (based on the value of INIT_SEL) or when FORCE is asserted and force init is

enabled. For PWM operation, the buffered contents of this register are loaded into the counter

at the start of every PWM cycle. The INIT register is buffered. The value written does not

take effect until the LDOK bit is set and the next PWM load cycle begins or LDMOD is set.

This register cannot be written when LDOK is set. It is the same for the VALx registers.

VAL0 defines the midpoint of the PWM cycle. VAL1 defines the final value of the counter.

VAL2 and VAL4 set the rising edge position of PWMA and PWMB. VAL3 and VAL5 set

the falling edge position of PWMA and PWMB.

The actual value of the submodule counter is reflected in CNT register.

c. Configuration of the output

The register OCTRL configures the polarity of PWM output (POLA, POLB, POLX). If an

output is inverted, a low level on PWM pin leads to an "on" or active state.

PWMAFS, PWMBFS and PWMXFS determine the fault state for the PWM outputs during

fault conditions and STOP mode (logic 0, 1 or tristate). It may also define the output state

during DEBUG modes depending on the settings of DBGEN.

The outputs PWMA, PWMB and PWMX of a submodule are enabled if the corresponding bit

in the PWMA_EN, PWMB_EN or PWMX_EN in register OUT_EN is set.

BE électronique automobile 5e année ESPE

 57

The register MASK forces the output PWMA, B and X to 0 when a bit 1 is written in the

corresponding field.

d. Configuration of the deadtime

Deadtime insertion is only possible in complementary channel mode. Registers

FlexPWM_SUBn_DTCNT0 and FlexPWM_SUBn_DTCNT1 configures the deadtime during

0 to 1 and 1 to 0 transitions. The deadtime is expressed in peripheral clock cycles regardless

of the setting of PRSC and/or CLK_SEL. By default, the value is 2047 clock cycles.

e. Output trigger

If OUT_TRIG_EN bit is not set, OUT_TRIGx will not set when the counter value matches

the VALx value. Otherwise, OUT_TRIGx will set when the counter value matches the VALx

value.

f. Run the PWM module

The register MCTRL (master control register) contains the command to load the PWM signal

parameters and activate the PWM output.

IPOL (current polarity) selects between PWM23 and PWM45 as the source for the generation

of the complementary PWM pair output in each submodule. It is ignored in independent mode.

LDOK loads the PWM parameter values (prescaler, counter modulus and PWM values) in the

associated register of each submodule. RUN bits field enables the clock to the PWM

generator of each sub-module.

Initialize all registers and set the LDOK bit before setting the RUN bit.

BE électronique automobile 5e année ESPE

 58

XII - Cross Triggering Unit (CTU)
Refer to Chapters 41 – Cross-Triggering Unit (CTU) for the principles and the configuration

of CTU.

1. Presentation - Overview

MPC5744P contains two CTU modules (CTU0 and CTU1). One of the main purpose of CTU

in motor control application is the synchronization by hardware of Analog to Digital

Converters (ADC) measurements on timing events from PWM, in desired time intervals. The

advantage of the CTU is that it can trigger the ADC faster than an interrupt request and the

CPU does not need to be involved for the data acquisition by the ADC. The CTU is not only

able to trigger ADC measurement but also store measured data into buffer located in SRAM

automatically, based on DMA mechanism. Thus, this autonomous measurement concept

offloads the CPU and presents a very precise method to achieve the ADC time critical

measurement synchronized with PWM signal generated by FlexPWM module. The hardware

concept for PWM signal generation, ADC measurement and DMA machine are illustrated in

Figure 28.

Figure 28 - Illustration of the autonomous ADC measurement synchronized on PWM event

Tips: the ADC must be configured in CTU mode, as explained in chapter XIII of this

document. Conversion results are not only available in internal FIFO of CTU, but also in

conversion data registers of ADC. Interrupt requests can be enabled when end of CTU

conversion occurs to indicate that conversion results are available. Thus, there are several

methods to retrieve conversion result. The most efficient method from CPU loading point of

view is DMA access.

BE électronique automobile 5e année ESPE

 59

The CTU aims at receiving triggering signals, scheduling the acquisition tasks by the ADC in

desired interval and collecting conversion results in internal FIFOs. Figure 29 presents the

block diagram of the CTU module. It is composed of two main parts, clocked by a prescaled

version of MOTC_clk (the same clock source than FlexPWM modules):

▪ Trigger Generation Subunit (TGS): receives up to 16 digital signals from different

sources such as PWM, timers, position decoder, external pins, and/or software. The

correspondence between these 16 input signals and sources is given in Figure 30.

These signals are then delayed in order to to generate up to eight trigger events, which

are used by the scheduler unit. An input event can be a rising edge, a falling edge, or

both edges of the incoming signal.

▪ Scheduler Subunit (SU): is responsible for the generation of ADC command lists,

output triggers to on-chip logic such as timers or off-chip external trigger signals. The

scheduler unit generates trigger events which can be a pulse, an ADC command, or a

stream of consecutive ADC commands for oversampling support. The outputs are

targeted to one or more peripherals such as ADCs (ADC0 which is called ADC A and

ADC1 called ADC B) and eTimers 0, 1 and 2.

Figure 29 – CTU block diagram

Input Source Input Source

0 FlexPWM0 master reload (PWM_REL) 8 FlexPWM0 submodule 3 - OUT_TRIG1

(PWM_EVEN_3)

1 FlexPWM0 submodule 0 - OUT_TRIG0

(PWM_ODD_0)

9 FlexPWM0 submodule 0 - PWMX0

(RPWM_0)

2 FlexPWM0 submodule 1 - OUT_TRIG0

(PWM_ODD_1)

10 FlexPWM0 submodule 1 - PWMX1

(RPWM_1)

3 FlexPWM0 submodule 2 - OUT_TRIG0

(PWM_ODD_2)

11 FlexPWM0 submodule 2 - PWMX2

(RPWM_2)

4 FlexPWM0 submodule 3 - OUT_TRIG0

(PWM_ODD_3)

12 FlexPWM0 submodule 3 - PWMX3

(RPWM_3)

5 FlexPWM0 submodule 0 - OUT_TRIG1

(PWM_EVEN_0)

13 eTimer 1 (ETIMER1_IN)

6 FlexPWM0 submodule 1 - OUT_TRIG1

(PWM_EVEN_1)

14 eTimer 2 (ETIMER2_IN)

7 FlexPWM0 submodule 2 - OUT_TRIG1

(PWM_EVEN_2)

15 External input (EXT_IN)

Figure 30 – Number of input trigger source of CTU

BE électronique automobile 5e année ESPE

 60

Two external signals are associated with a CTU module:

▪ EXT_IN: input pin for external trigger sources

▪ EXT_TRG: output pin to send external trigger signal

To ensure a coherent update during the transition from one control cycle to the next,

configuration registers of the CTU are double-buffered. A register reload mechanism is

provided, as in FlexPWM module.

Tips: CTU Clock (MOTC_CLK) and ADC_CLK should either be same and synchronous or

CTU can also operate with ADC_CLK being an integer plus half (1.5, 2.5,3.5, ...) of

MOTC_CLK clock. If this condition is not fulfilled, triggering of ADC measurements could

be erroneous.

2. Functional details

a. Trigger Generator Subunit (TGS)

The TGS is composed of one counter to generate sequential trigger events and 8 double-

buffered registers for the generation of delay between input and output trigger signals.

The TGS has two modes of operation:

▪ Trigger mode: the input events from the CTU interface are used to generate a

sequence of up to 8 triggers to several outputs such as the ADCs, timers, and external

triggers. Internal sequencer logic is used to schedule the triggers based upon the input

event occurrence.

▪ Sequential mode: each input event generates only one trigger for the selected output,

such as ADCs, timers, and external triggers.

TGS is synchronized by a divided version of MOTC_clk, according to a prescaler defined by

PRES bits in TGSCR register.

In trigger mode

The TGS has 16 input signals selected from the input selection register (TGSISR). The

available selections are rising, falling or both edges. These 32 input events are selected

through the TGSISR register and OR-ed in order to generate the Master Reload Signal (MRS),

which defines a control cycle. This signal ensures the reload mechanism in double-buffered

register. In trigger mode, only one input trigger signal is generated from these different input

sources.

Tips: TGSISR register is double buffered. Its loading is controlled by a specific bit, contrary

to the other double-buffered registers of the CTU (whose loading is done by setting the GRE

bit is CR register). The loading of TGSISR is controlled by the bit TGSISR_RE bit in the CR

register.

The rest of the TGS aims at setting a controlled delay between this input trigger signal and the

output trigger signals. The delay is set by comparing the content of the TGS counter with the

content of trigger compare registers. The triggers list registers consist of 8 compare registers

(TCR[0] to TCR[7]). Each register is associated with a comparator, where a match with the

TGS counter generates an output trigger. Thus 8 output triggers can be generated. The counter

counts from a minimum value defined by the counter reload register TGSCRR. When a reload

BE électronique automobile 5e année ESPE

 61

triggered by MRS occurs, the counter is reinitialized to TGSCRR value. It can count up to a

maximum value defined by Counter Compare Register (TGSCCR). When the counter reaches

this value, it stops counting until the next MRS occurrence when it will be reinitialized. The

value in TGSCRR and TGSCCR are 2's completed so the minimum value is 0x8000 and the

maximum value is 0X7FFF.

Figure 31 - Trigger Generator subunit in triggered mode (MPC5744PRM.pdf - p. 1252 – Fig. 41-3)

The different trigger outputs are produced by comparison of the counter with values stored in

Triggers Compare Registers TCR. Hence, delays can be controlled between the trigger source

and the output trigger signals. It is illustrated in the figure below.

Figure 32 - Timing diagram for TGS in triggered mode (MPC5744PRM.pdf - p. 1254 – Fig. 41-4)

In sequential mode

In this mode, only one input signal generates the MRS signal. However, the selected input

signals which arises after the master reload signal will be able to produce Event Signals (ES).

Output trigger signals will be generated from these Event Signals after a controlled delay.

Once again, the delay is controlled by comparing the content of the TGS counter with the

content of trigger compare registers. Only one of the 32 input signals is selected by the 5-bit

MRS_SM (master reload selection) in TGSCR register. The selected signal re-loads the

trigger list and resets the 3-bit ES counter which selects the trigger event. Sequences of up to

eight trigger events are generated in one control cycle.

BE électronique automobile 5e année ESPE

 62

Figure 33 - Trigger Generator subunit in sequential mode (MPC5744PRM.pdf - p. 1255 – Fig. 41-
5)

The trigger events are indicated with the delay with respect to the ES. Note that initially ES

and MRS are aligned. The TGS counter is re-loaded on each ES and starts counting up until

the next ES or until it matches the value in TGSCCR register and stops.

Figure 34 - Timing diagram for TGS in sequential mode (MPC5744PRM.pdf - p. 1255 – Fig. 41-6)

b. Scheduler subunit

The SU receives 8 trigger signals from the Trigger Generator subunit, and starts a command

list to the selected ADC (ADC 0 or ADC 1), or generates the trigger event outputs, whatever

the TGS mode. Each of the SU outputs can be linked to any of the 8 trigger events from TGS.

This is implemented by the Trigger Handler block. Each trigger event can be linked to one or

more SU outputs.

When a trigger is linked to an ADC, an associated ADC stream or list of commands is

generated. The address of the first command is defined by registers CLCR1/2. When a trigger

is linked to an eTimer or an EXT_TRG, an event is generated on the corresponding output.

BE électronique automobile 5e année ESPE

 63

Figure 35 - Scheduler subunit block diagram (MPC5744PRM.pdf - p. 1257 – Fig. 41-8)

c. ADC command list

The SU implements a command list that can store up to 24 ADC commands in a double-

buffered implementation. The commands are stored in CLR[x].A or CLR[x].B registers. The

command list buffer registers may be updated at any time between two consecutive MRS, but

the transfer is done only after an MRS occurs. The first command in a list is pointed by the 5-

bit CLCR1 and CLCR2 registers. Once a command list is triggered, it executes until the last

command is found.

Tips: The CTU reads the next command line (the LC bit) to determine if the present

command is the last one to be executed. So, if a command is the last one, its LC bit must be 0

but the LC bit of the next command must be set.

The ADC command follows two formats: they can be configured for single (only one ADC is

targeted) or dual conversion (two ADC are targeted at the same time). An ADC command is

composed by the following fields depending upon the conversion format used:

▪ Channel A: ADC A (ADC_0) channel number (4 bits)

▪ Channel B: ADC B (ADC_1) channel number (4 bits)

▪ Target ADC selection: ADC A or ADC B used in single conversion mode only (1

▪ bit)

▪ FIFO selection bits for the selected ADC unit: up to four FIFOs (2 bits)

▪ Conversion mode selection: single or dual conversion mode (1 bit)

▪ Last command (LC): defines the last command in a list (1 bit)

▪ Interrupt request: enable interrupt request on command execution (1 bit)

There are two modes of operation regarding the ADC command list execution: streaming

mode and parallel mode, depending on bit PAR_LIST in register LISTCSR. In streaming

mode, the command lists should behave as a stream of commands, meaning that two or more

lists cannot be executed at the same time, but only in a sequence. In parallel mode, up to two

BE électronique automobile 5e année ESPE

 64

lists can be executed at the same time. In order to avoid errors during the execution of two

parallel lists, they should not have commands for the same ADC and the same channel.

d. ADC result FIFO

ADC results are stored in one of the four internal FIFO of the CTU. Each FIFO has its own

interrupt line, DMA request signal, and a status register. The target FIFO for a conversion

result is specified in the ADC command. Each FIFO element is 32 bits wide. FIFO0 and

FIFO1 have 16 entries each, dimensioned for full PWM period current acquisitions. FIFO2

and FIFO3 have 4 entries each dimensioned for low rate acquisitions.

The FIFO result register can be read in a right- or left-aligned format using two different

addresses:

▪ Unsigned right-justified, read from register FRx

▪ Signed left-justified, read from register FLx

DMA and interrupts can be configured individually for each FIFO. An interrupt line is

associated to each FIFO. Four interrupt flags are associated to each FIFO: empty FIFO, full

FIFO, overrun FIFO and overflow FIFO. Overflow condition is related to a user-configurable

threshold defined by register FTH. If the number of elements in the FIFO exceeds this

threshold, overflow condition arises.

e. Reload

In the majority of the CTU registers, the re-load is controlled by the Master Reload Signal

(MRS). Since MRS is generated by the hardware, it may occur while the software is still

updating the buffer registers. In this case, incoherent values are written to the registers

because the CPU did not finish the programing of all registers. In order to avoid this situation,

a General Reload Enable, GRE, control bit is provided. If GRE is cleared then no reload

occurs. If this bit is set, then the reload is done when MRS occurs.

f. Interrupts

The CTU generates the following interrupt requests which are controlled by the IR register:

▪ Error interrupt request (1 interrupt line), when CTU faults and errors occur

▪ ADC command interrupt request (1 interrupt line), when a new ADC command is

issued

▪ MRS interrupt request (1 interrupt line), when the MRS signal occurs.

▪ Trigger event interrupt request (1 interrupt line for each of the 8 trigger events), when

the corresponding trigger event occurs

BE électronique automobile 5e année ESPE

 65

▪ FIFOs interrupt and/or DMA transfer request (1 interrupt line for each FIFO).

Interrupts can triggered in empty, full, overrun or overflow conditions depending on

the configuration of FCR.

▪ DMA transfer request on the MRS occurrence if GRE bit is set.

g. DMA

DMA support is provided for reading FIFO stored data. Each FIFO can be configured to

perform a DMA request when the number of stored words reaches a threshold value defined

in the FTH register. After a DMA_DONE and the remaining data in the FIFO is below the

watermark, then the DMA request is removed. Thus for an efficient operation, the DMA

should be configured to execute a loop reading all data in the FIFO considering the amount of

data the same as defined by the watermark. DMA is enabled in each FIFO individually by the

register FDCR.

3. CTU configuration

The peripheral clock for CTU is MOTC, i.e. Auxiliary clock 0 - Divider 0, which must be

activated and configured correctly. The peripheral control registers associated to CTU0 and

CTU1 are PCTL251 and PCTL141 respectively. If external pins are required, they must be

configured.

a. Trigger input selection

The register TGSISR selects which of the 16 inputs of the CTU will be used to generate

trigger signals. Bits In_RE define if input n is sensitive to rising edge and bits In_FE define if

input n is sensitive to falling edge.

This register is double-buffered. The load from the corresponding buffer to the register is

controlled by the TGSISR_RE bit in the CTU_CR register.

b. Trigger generator subunit configuration

The register TGSCR controls the mode of operation (trigger or sequential mode) of the TGS

(TGS_M bit), the selection of one of the 32 inputs as master reload signal in sequential mode

(MRS_SM), and sets the prescaler value of the TGS counter (PRES field).

BE électronique automobile 5e année ESPE

 66

The content of the 8 compare registers is accessible through the registers TnCR (n = 0 to 7).

They are double-buffered. The TGS counter counts from the value defined by the 16-bit

register TGSCRR. This value is loaded when a MRS occurs. When the counter reaches the

value defined in the 16-bit register TGSCCR, it stops counting.

These different registers aim at defining a delay between the trigger source and the sequence

of trigger signals that will be sent to the destination peripheral.

c. Scheduler subunit configuration

The first part of the scheduler subunit is the trigger handler, which generates output trigger

signal to one destination peripheral (ADC, eTimer, external trigger). It is controlled by two

registers: THCR1 and THCR2, which are organized in 8 groups of 7 enable bits. Each group

is associated with one trigger from the Trigger subunit. Each group of enable bits has 7

enables corresponding to a master trigger enable, External Trigger output enable, 4 eTimer

outputs, and the ADC command list enable, respectively. If the master trigger enable Tn_E is

cleared, the trigger is disabled and the other trigger enable bits in the group have no effect.

These registers are double-buffered and updated when MRS signal occurs.

If the trigger destination is the ADC, the ADC command list must be configured. It can

contain up to 24 command lines which are stored in the scheduler subunit. The address of up

to 8 commands are stored in the registers CLCR1 and CLCR2, where the 5 bits in the field

Tn_index code the address (valid address from 0 to 23).

The ADC command list can be configured for single or dual conversion mode. The single

conversion mode is controlled by the registers CLR_A_n, CLR_B_n, CLR_C_n, where n = 1

to 24 (one register per command line). For single conversion mode, the format of command

line defined by CLR_A_n is used, while in dual conversion mode, CLR_B_n is considered. In

single conversion mode, the bit CMS and STO of the CLR_A_n register must be '0' and '0'

respectively. The bit LC indicates if this command line is the last command of a sequence

(thus the next command line is the beginning of a new sequence). CIR may enable interrupt

request when error on command execution arises. SU selects ADC port A (ADC_0) or B

(ADC_1) and CH provides the number of the ADC channel. FIFO selects the FIFO used to

store the conversion result from ADC.

BE électronique automobile 5e année ESPE

 67

The ADC command list can be executed either in streaming or parallel mode, according to the

bit PAR_LIST in register LISTCSR.

d. FIFO management

DMA requests on each result FIFO are enabled by the register FDCR register.

FCR register to enable the different interrupts associated to FIFO (overrun, overflow, empty,

and full).

The status of the FIFO is given by different flags available in the register FST.

A pointer is associated to each FIFO. In order to determine if an overflow of the pointer arises

or to determine if the amount of data in the FIFO is sufficient to read it, a FIFO threshold

register has been defined (FTH). Thresholds can be defined for the four FIFO.

The FIFO result register can be read in a right- or left-aligned format using two different

addresses:

▪ Unsigned right-justified, read from register FRx (for FIFO x)

▪ Signed left-justified, read from register FLx (for FIFO x)

BE électronique automobile 5e année ESPE

 68

These registers indicate also from which ADC the data comes from and the channel number.

e. Interrupt management

Interrupts associated to each FIFO are enabled by the register FCR, as explained previously.

The other interrupt requests are enabled by the register IR. Interrupt flags are available in the

register IFR, while error flags are given in the register EFR.

f. General control of the CTU

When the bit CTU_ODIS is set, the CTU output is disabled. The bit DFE enables the digital

filter on the trigger input of the CTU.

The bit GRE controls the reload mechanism for double buffered register of the CTU. when it

is set to 1, these registers will be updated at the next occurrence of MRS signal. This bit can

be cleared with CGRE bit so no reload can occur.

The bit TGSISR_RE controls the reload of the register TGSISR, which selects the trigger

input of the CTU.

The bits T0_SG to T7_SG generate software trigger events.

XIII - Analog-to-digital converter (ADC)
Refer to Chapters 35 and 36 – Analog-to-Digital Converter (ADC) for the principles and the

configuration of ADC.

1. Presentation - Overview

There are four 12-bit ADC modules based on Successive Approximation Rate (SAR)

architecture, each consists in 16 analog channels. The maximum sampling rate is 1

Msamples/second at the maximum ADC clock frequency (80 MHz).

ADC 0 and ADC 1 contain only precision channels, contrary to ADC 2 and ADC 3. The

ADC_0 has one channel dedicated to the internal temperature sensor TSENS0, while ADC_1

has one channel dedicated to the internal temperature sensor TSENS1. In addition, all four

ADCs have watchdog functionality (up to 16 watchdogs) that compares ADC results against

predefined levels before results are stored in the appropriate ADC result location. All four

ADCs have only two possible ADC supplies: ADC0 and ADC1. These two supplies must be

enabled to use the ADC functionality.

Two operating modes are proposed: regular mode and motor control mode. In normal mode,

the conversion is launched by software. In motor control mode, the conversion is triggered by

PWM signals through the CTU.

BE électronique automobile 5e année ESPE

 69

ADC block diagram (p 959)

Figure 36 - ADC block diagram (MPC5744PRM.pdf - p. 959)

Each ADC is controlled by a CTU block in CTU Control Mode. In this mode, the CTU can

control each ADC by sending an ADC command. The CPU is able to write in the ADC

registers but it cannot start a new conversion. For the MPC5744P device, the CTU0 is the

controller for ADC0 and ADC1 whilst the CTU1 controls the ADC2 and ADC3 modules.

External triggers from eTimer1 and eTimer2 can also be used to start conversion.

The different analog pad can be multiplexed to several ADC module inputs. Read table 35-1 p.

960 for ADC pin muxing. Example: the analog pad ADC0_ADC1_AN11 is associated

physically to the pin B9 (PAD[25]) of the microcontroller. It can be multiplexed to the

channel 11 of either ADC0 or ADC1.

2. Structure and main features of the ADC

The ADC is composed of a digital part (ADCD) which holds the configuration, control, and

status registers accessible to software via the host bus, the conversion results, and an analog

part (ADCA). The analog channel inputs are fed to the inputs of the ADCA. Each channel is

sampled for a specific duration and compared with an analog voltage generated with digital

code via a digital-to-analog converter (DAC) in the ADCA. The comparison result is given to

the ADCD to generate the converted digital value.

BE électronique automobile 5e année ESPE

 70

Figure 37 - ADC block diagram (MPC5744PRM.pdf - p. 965 – Fig. 36-1)

The ADCD uses the bus clock (AD_clk, derived from auxiliary clock 0) to access to the

internal registers. The AD_clk is the operating clock for ADCA and the SAR. Depending on

the bit ADCLKSEL of register MCR, AD_clk can have the same frequency than the bus clock,

or half frequency.

The sampling of the different channels can be configured independently.

Conversions can be initiated by either software or hardware. The ADCD has an on-chip

interface with the CTU that can also initiate conversions. The CTU interface supports CTU

Control mode.

The ADCD provides interrupt/DMA support for each type of channel for various end-of

channel conversion conditions. Data can be transferred via DMA. Interrupts arise for the

following conditions:

▪ End of conversion for a single channel for both normal and injected conversions

▪ End of conversion for a chain for both normal and injected conversions

▪ End of CTU conversion

▪ Watchdog thresholds crossover

The ADCA can be recalibrated through software-initiated calibration process.

The ADCD can be configured to periodically check the health of the ADCA through various

self-tests and communicate any critical/non-critical faults to the Fault Collection and Control

Unit (FCCU). The severity (critical/noncritical) of the different tests is programmable.

3. Functional description

After power-up or reset, the ADC is in power-down mode until the MCR[PWDN] field is

written. There are some configurations available only in power-down mode, that must be

handled before exiting power down.

a. Conversion modes

There are three conversion modes:

BE électronique automobile 5e année ESPE

 71

▪ Normal conversion mode: each channel used in normal conversion mode is enabled by

bits in register NCMR0 (the channels are only selectable when the conversion is

stopped). A normal conversion is launched by software setting the bit NSTART in

register MCR. it can be initiated by an external trigger by setting the bit TRGEN. A

programmed event (rising/falling edge), depending on bit EDGE on the normal trigger

input starts the conversion. In this mode, the conversion process consists in two phases:

a sampling of an analog channel, and then the conversion of the sampled channel. In

normal mode, the change of the configuration must be done before the launching of

the conversion. Two sub-modes are proposed:

o in one shot mode, only one sequential conversion is launched for all the

activated analog channels. The bit NSTART is reset automatically when the

conversion starts. At the end of conversion of the last activated channel, the

scanning of channels stops and the converted result is stored into the

corresponding data registers CDRn, n = channel number. The end of

conversion of the running chain is indicated by an End of Chain (ECH)

Interrupt. The end of conversion of each channel is indicated by end-of-

conversion (EOC) interrupt if enabled in the IMR register and by the

corresponding mask bit in the register CIMR0. The corresponding channel bit

within the appropriate CEOCFR0 register is updated to indicate that data is

available on the data register (CDRn) of the respective channel.

o In scan mode, the sequential conversions are done on each activated analog

channel continuously. At the end of each conversion, the converted result is

stored into the corresponding data registers. The NSTART status bit is

automatically set when the normal conversion starts. Unlike One-Shot mode,

the MCR[NSTART] bit is not reset automatically in Scan mode. It can be reset

by software when you need to stop Scan mode. The end of conversion of each

channel is indicated by end-of-conversion (EOC) interrupt if enabled in the

IMR register and by the corresponding mask bit in the register CIMR0. The

corresponding channel bit within the appropriate CEOCFR0 register is updated

to indicate that data is available on the data register (CDRn) of the respective

channel.

▪ Injected channel conversion mode: the normal conversion process can be interrupted

to inject the conversion of another channel.

▪ CTU triggered conversion mode: Refer to chapter XII of this document for the

configuration of CTU module. The interface between CTU and ADC is shown below.

The CTU generates a trigger and a channel number to be converted. A single channel

is converted for each request. After performing the conversion, the ADC returns the

result. The conversion result is also saved in the corresponding data register.

BE électronique automobile 5e année ESPE

 72

Figure 38 - Links between CTU and ADC (MPC5744PRM.pdf - p. 1040 – Fig. 36-4)

In CTU Control mode, if enabled via MCR[CTUEN], the CPU is able to write in the ADC

registers, but it cannot start a conversion. Conversion requests can be generated only by a

CTU trigger. When the CTU conversion starts, the bit MSR[CTUSTART]is set automatically.

ADC calibration cannot be done during CTU request.

b. Clock and conversion time settings

The clock (AD_clk) provided to the ADC's SAR controller must satisfy particular conditions

of frequency and duty cycle. The maximum acceptable frequency is 80 MHz with a duty

cycle equal to 50 % (+/- 5 %). The AD_clk frequency can be scaled by programming the

MCR[ADCLKSEL] bit. If this bit is set, AD_clk frequency is the same as the bus clock.

Otherwise, AD_clk frequency is half of the bus clock. MCR[ADCLKSEL] can only be

written in power-down.

Tips: do not forget to configure the ADC_clk. It is derived by the Auxiliary clock selector 0

and the divider 2. Its frequency must not exceed 80 MHz.

The conversion time is controlled by settings in the Conversion Timing Register CTR0 for

precision channels (except the temperature sensor which is controlled by register CTR1). The

conversion time is composed of four time intervals:

▪ Trigger processing time (TPT): it consists in two clock cycles to prepare the channel

and start the operation. For a continuous conversion, this time is not required. Triggers

from synchronous CTU interface requires two cycle of bus clock for first conversion,

and then only one cycle.

▪ Sample phase time (ST): the sample time duration is controlled by the INPSAMP[7:0]

field of Conversion timing Registers ADC_CTR0. The minimum number of clock

cycles is 8.

▪ Compare phase time (CT): it is dependent on the resolution setting It takes ((n + 1) × 4)

cycles of AD_clk, where n is the resolution setting configured in

CALBISTREG[OPMODE]. For normal resolution, n = 12. For high accuracy, n = 13.

▪ Data processing time (DT): The ADC takes 2 cycles of AD_clk to post process and

load the data registers.

Thus, the total conversion time is equal to: TPT+ST+CT+DT. If presampling is enabled, it is

done before the channel sampling phase. Its duration must be taken into account: it takes

CTRx[INPSAMP] cycles plus two cycles to switch to the actual channel sampling phase.

BE électronique automobile 5e année ESPE

 73

c. Presampling

The ADC block proposes presampling features for the conversion. It consists in precharging

or discharging the ADC sampling capacitor just before the sampling step, in order to remove

history effect and parasitic offset, and thus improve the conversion quality. During

presampling, the ADC samples the internally generated voltage while, during sampling, the

ADC samples the analog input coming from the pads. Presampling can be enabled on an

individual channel by setting the corresponding bit in the applicable PSR0 register. Sampling

of the channel can be bypassed by setting the bit PSCR[PRECONV], and the presampled

voltage is converted. The two bits PREVAL0[0:1] of the register PSCR select analog input

voltage for presampling from the available four internal voltages for internal precision

channels (see MPC5744PRM.pdf - p. 1042– table 36-1 for information about the selectable

voltages). The presample voltage for the temperature sensor channel is selectable by the bits

PREVAL1.

d. Programmable analog watchdog

The ADC block proposes also one programmable analog watchdog per analog channel. This

function verifies if a conversion result belongs to a predefined voltage interval, set by the

threshold registers THRH and THRL which define the upper and lower limits of the interval.

After the conversion of the selected channel, a comparison is performed between the

converted value and the threshold values. If the converted value lies outside the guard area,

then the corresponding threshold violation interrupt is generated. Moreover, the

corresponding bit is set in the Analog Watchdog Out of Range Register (AWORR). The

comparison result is stored as WTISR[WDGxH] and WTISR[WDGxL]. Depending on the

WTIMR[MSKWDGxL] and WTIMR[MSKWDGxH] mask bits, an interrupt is generated

upon threshold violation.

The analog watchdog for each precision channel can be enabled independently by

programming CWENR0 register bits. Up to 16 high and low threshold voltages can be

defined by the registers THRHLRx,(x=0..15). For each channel, one of these 16 threshold

value is selected by the register CWSELR0/1.

e. Interrupts and DMA

Several maskable interrupt are proposed:

▪ EOC (end of a conversion)

▪ ECH (end of conversion of a chain)

▪ JEOC (end of an injected conversion)

▪ JECH (end of injection chain)

▪ EOCTU (end of conversion in CTU conversion mode)

▪ WDGxL and WDGxH (Watchdog threshold interrupt)

The Interrupt Mask Register (IMR) is used to enable the interrupt request related to end of

conversion (WTIMR is used to mask interrupt related to analog watchdog). Interrupts can be

individually enabled on a channel-by-channel basis by programming the Channel Interrupt

Mask Register (CIMR0). A Channel Pending Register (CEOCFR0) is also provided in order

to signal which of the channels' measurement has been completed.

BE électronique automobile 5e année ESPE

 74

A Direct Memory Access (DMA) request can be programmed after the conversion of every

channel by setting the respective masking bit in DMAR0 register, if the DMAEN bit is set in

the register DMAE.

f. Calibration

The raw converted ADC data contains many types of errors such as offset, gain, DC bias, and

so on. To generate error-free results, raw converted data is processed before it is written to a

result register. The process of error correction goes bit-by-bit during conversion with the

values generated during the offset calculation and calibration process.

The ADC is calibrated and tested runtime through the same set of test conversions. The test

result is used for computation and stored during the calibration process and only checked in

self-test. To eliminate errors due to manufacturing process and environmental effects, the

ADC must be calibrated prior to any conversion after every power-up/destructive reset and

whenever required in runtime operation. In the calibration process, a fixed known reference

voltage (VrefH) is sampled many times (up to 512) and converted under various controlled

conditions to check for deviations between these converted values and predefined values. The

deviations, known as offsets or modified values, are used to eliminate errors during the data

processing of normal conversions. The recommended frequency for calibration is 40 MHz. It

can take some tens of ms.

The calibration process is configured according to the settings of register CALBISTREG,

only when the ADC is in power mode: the averaging mode can be enabled, the number of

samples for averaging and the sampling period are set. The calibration must be done outside

the power-down mode of the ADC. No normal conversion must be launched, otherwise the

calibration is aborted. The calibration is set by setting bit TEST_EN of register

CALBISTREG.

At the end of the calibration process (indicated by status bit CALBISTREG[C_T_BUSY]),

the bit MSR[CALIBRTD] is set to 1 if the calibration is successful. Otherwise, the bit

CALBISTREG[TEST_FAIL] is set to 1, which means that the calibration configuration was

not correct or the ADC health is not good.

g. Self test

For devices used for very critical applications requiring high reliability it is important to

check at regular intervals if the ADC is functioning correctly. For this purpose, Self Testing

feature (Quick Check) has been incorporated inside ADC. Two algorithms are proposed to

test the ADC:

▪ Supply Self test: algorithm S. It includes the conversion of the bandgap, supply and

VREF voltages. It includes a sequence of three test conversions (steps). The supply

test conversions must be an atomic operation (no functional conversions interleaved).

▪ Capacitive Self test: algorithm C. It includes a sequence of 12 test conversions (steps)

to check the capacitive array

The supply test can be followed by the capacitive test. More information about the tests and

its settings can be found in the MPC5744P reference manual

BE électronique automobile 5e année ESPE

 75

4. ADC registers

a. Configuration of the pad

It is important to enable the I/O pad associated to an analog channel as an analog input. The

APC bit of the MSCR register associated to the pad must be set to ‘1’ (refer to part VI – GPIO

pad configuration).

b. Configuration settings of the ADC block

All the configurations of the ADC (conversion mode, power-down mode, start of

conversion…) are provided by the Main Configuration Register (MCR). The configuration of

the ADC must be done in low-power mode. The bit MODE selects if a scan mode or a one-

shot mode is configured in normal mode. The bit NSTART starts a normal conversion.

Writing a ‘1’ launches the conversion. The bit is set to ‘0’ at the end of the conversion.

Writing a ‘0’ stops the current chain conversion. ADCLKSEL set the ADC clock frequency to

the 1x or 1/2x the peripheral clock frequency. Writing a ’0’ to the PWDN bit forces the ADC

to quit the power down mode to the IDLE mode. It is necessary to start conversions. Writing a

‘1’ is a request to enter in power down mode.

The register Main Status Register (MSR) provides status of the ADC (normal conversion on-

going, current conversion channel address, power-down mode…).

c. Conversion timing registers

Three Conversion Timing Registers are proposed: CTR0 for internal precision channels. The

field INPSAMP sets the duration of the sampling phase in AD_clk cycles.

d. Selection of analog inputs

The selection of enabled analog inputs in a normal conversion chain is done with Normal

Conversion Mask Register NCMR0 for precision channels. The configuration of this register

must be done in low power mode and when the conversion is stopped. Writing a ‘1’ in the bit

corresponding to an analog channel selects this channel in the conversion chain. For example,

if a normal mode is selected in Scan mode, if CH1 = ‘1’ and CH7=’1’ only (all the other bit

BE électronique automobile 5e année ESPE

 76

set to ‘0’), the following conversion sequence will be done continuously: sample/convert

channel 1, sample/convert channel 7, sample/convert channel 1, sample/convert channel 7….

The selection of injected channels is done with the JCMR0 registers.

e. Configuration of interrupts

Several registers are proposed to mask the maskable interrupts associated to the ADC block.

The Interrupt Mask Register (IMR) enables End-of-Conversion type interrupts. The interrupts

are enabled by writing ‘1’ in register bits. The interrupts related to the analog watchdog are

maskable with the register WTIMR.

The register Interrupt Status Register (ISR) gives the interrupt flags associated to the

maskable interrupt enabled by IMR register.

Interrupts can be associated to the end of conversion of each channel with the Channel

Interrupt Mask Registers CIMR0. The register Channel Pending Register CEOCFR0 gives the

interrupt flags associated to the maskable interrupt enabled by CIMR register.

End of conversion interrupts are associated to interrupt vector numbers 496 to 498 for ADC_0

and 500 to 502 for ADC_1 (report to Table 7.16 p 193).

f. Power down configuration

As explained previously, the request of power down entry or exit is set with PWDN bit in

MCR register. It is possible to configure the delay between the exit of power down mode and

the start of the conversion with the Power Down Exit Delay Register (PDEDR).

BE électronique automobile 5e année ESPE

 77

g. Data registers

ADC conversion results are stored in data registers. There is one data register CDR[n] per

analog channel. A CDR register is organized as follows: several bit to give a status of the

conversion result (bit VALID, bit OVERW if overwritten by a new result, and the mode of

conversion RESULT), and the 12-bit conversion result (field CDATA). The alignment of the

data (right or left alignment) is set by the register WLSIDE in MCR register.

The bit VALID notifies if CDATA comes from a valid conversion. This bit is automatically

cleared when the data is read. The bit OVERW notifies that the previous converted data has

been overwritten by a new conversion. The field RESULT[0:1] reflects the conversion mode

for the corresponding channel.

h. Calibration, BIST Control and status Register

The register ADC_CALBISTREG offers the settings of the calibration and the configuration

of the accuracy of the ADC (normal 12-bit mode or high accuracy). The accuracy is set by the

field OPMODE. The averaging mode is enabled by the bit AVG_EN, the number of samples

for averaging is set by the field NR_SMPL (512 by default) and the sampling period is

controlled by the field TSAMP. Using default values is recommended. The calibration is

enabled by the bit TEST_EN. When the test is busy, the bit C_T_BUsY is set to 1. If the test

failed, the bit TEST_FAIL is set to 1.

BE électronique automobile 5e année ESPE

 78

XIV - Periodic interrupt Timer (PIT)
Refer to Chapter 44 –Timers for the configuration of periodic interrupt timer (PIT).

The MCU MPC5744P proposes several timer peripherals dedicated to different uses:

▪ System Timer Module (STM): it contains a 32-bit running-up counters clocked by the

MCU system clock and four 32 bit compare channels with individual interrupts. This

block is dedicated to the measurement of code execution time (number of clock

cycles).

▪ Periodic Interrupt Timer (PIT): one PIT module (PIT_0) with four programmable

channels for general purpose time measurements

▪ Software Watchdog Time (SWT): it contains a 32 bit timer used to prevent from

system lock-up when the software is trapped in a loop or a bus transaction failed.

Only PIT will be detailed in this chapter.

The PIT block is an array of 4 programmable timers (or channels) that can trigger maskable

interrupt request each time they reach ‘0’. These timer channels are PIT_0.TIMER[0] to

PIT_0.TIMER[3]. They are associated to 32 bits downcounters.

BE électronique automobile 5e année ESPE

 79

The general configuration of PIT block is set by the register MCR. The bit FRZ ensures that

the timers are stopped in debug mode when set. Setting the MDIS bit to ‘0’ enables the clock

for the timers.

The configuration, the count value charging and the interrupt flag are provided by several

registers for each timer channel. The register LDVAL configures the timer start value and

thus the timeout period of the timer (depending on the timer clock period). Writing a value in

this register does not restart the timer. The timer has to be disabled first and then enabled

again. The value is loaded in the timer counter (its current value is indicated by the register

CVAL, only in read mode) at each time-out (i.e. each time it reaches 0). The individual

configuration of each timer channel is set by the register TCTRL. Setting the bit TEN loads

LDVAL value in the timer counter and starts the downcounting operation. Setting the bit TIE

enables interrupt raise each time the timer counter reaches 0.

The bit TIF of the register TFLG is set to 1 when the time-out of the timer channel occurs. If

the interrupt associated to time-out of the channel is enabled, the TIF causes an interrupt

request. To reset the TIF bit, a ’1’ has to be written.

XV - SPI bus and SPI module
This chapter aims at providing some elements about hardware architecture and operation

principles of SPI bus, but also the more basic programming elements for the embedded SPI

controller of the MPC5744P. Refer to Chapter 49 –Serial Peripheral Interface for the

configuration of SPI module.

1. Some elements about SPI protocol

The SPI is a synchronous serial communication bus which operates in full-duplex mode. The

communication is based on a master-slave protocol. Several slaves can be placed on the bus,

the selection is done through a Chip Select line.

The bus is made of 4 logical signals:

▪ SCLK: the clock generated by the master

▪ MOSI (Master Output, Slave Input) or Data Out: data sent by the master

▪ MISO (Master Input, Slave Output) or Data In: data sent by the slave

BE électronique automobile 5e année ESPE

 80

▪ CS (Chip Select) or PCS (Peripheral Chip Select): selection of the slave by the master,

usually active at low state

The MOSI of the master must be connected to the MISO of the slave and vice-versa. At each

SCLK period, one bit is exchanged. When a data transfer operation is performed, data is

serially shifted by a pre-determined number of bit positions. Because the registers are linked,

data is exchanged between the master and the slave. The data that was in the master’s shift

register is now in the shift register of the slave, and vice versa. The number of bits to

exchange can vary (it must not exceed the size of shift register).

Figure 39 – SPI communication overview

2. Presentation of DSPI module

a. General description

The MCU embeds 4 DSPI modules called SPI_0 to SPI_3 with 4 clock and attribute registers

and 8 Chip Select per module. Each SPI module has the following pins:

▪ CS0: peripheral chip select 0 (slave select in master mode)

▪ CS1 to CS4 and CS6 to CS7: peripheral chip select 1 to 4 and 6 to 7 (unused in slave

mode)

▪ CS4: peripheral chip select 4 (master trigger)

▪ CS5: peripheral chip select 5 (unused in slave mode. In master mode, it is used as a

strobe signal transmitted after CSx signal to prevent from glitches)

▪ SIN: serial data in

▪ SOUT: serial data out

▪ SCK: serial clock

The block diagram of the SPI module is described in Figure 40. The clock bus for SPI

modules is PBRIDGE_clk. This clock source is used to generate the timing parameters of SPI

transfer, through several configurable prescalers.

A 16-bit shift register in master and a 16 bit shift register in slave are associated to SOUT_x,

and SIN_x signals, and form a 32 bit register. The SPI frames can be from 4 to 16 bits long.

The data to be transmitted can come from queues stored in SRAM external to the SPI. Host

software can transfer the SPI data from the queues to a first-in first-out (FIFO) buffer. Host

software can add (or push) entries to the TX FIFO by writing to the SPIx_PUSHR. The SPI

ignores attempts to push data to a full TX FIFO.

The received data is stored in entries in the receive FIFO (RX FIFO) buffer. Host software

transfers the received data from the RX FIFO to memory external to the SPI.

BE électronique automobile 5e année ESPE

 81

Figure 40 - Block diagram of SPI module (MPC5744PRM.pdf - Fig. 49-1 - p. 1576)

The SPI has 4 modes of operation:

▪ Master mode (SPI initiates and control the serial communication, the pins SCK, Sout

and CS are outputs and controlled by SPI)

▪ Slave mode (SPI responds to external SPI bus masters and cannot initiate

communications. The SCK and CS pin are configured as input, an internal pull-up

must be configured on CS0_x input. All transfer attributes are controlled by the bus

master, except the clock polarity, clock phase and the number of bits to transfer which

must be configured in the SPI slave to communicate correctly.)

▪ Module disable mode (low power mode)

▪ Debug mode

The SPI has two operating states: STOPPED and RUNNING. The states are independent of

SPI configuration. The default state of the SPI is STOPPED. In the STOPPED state no serial

transfers are initiated in master mode and no transfers are responded to in slave mode. The

STOPPED state is also a safe state for writing the various configuration registers of the SPI

without causing undetermined results. After a reset, the SPI module is in STOPPED state.

b. TX Buffering and transmitting mechanisms

The data field in the executing TX FIFO entry is loaded into the shift register and shifted out

on the serial out (SOUT_x) pin. The TX FIFO functions as a buffer of SPI data and SPI

commands for transmission. SPI commands and data are added to the TX FIFO by writing to

the SPI push TX FIFO register (PUSHR). TX FIFO entries can only be removed from the TX

FIFO by being shifted out or by flushing the TX FIFO. The TX FIFO counter field (TXCTR)

in the SPI status register (SR) indicates the number of valid entries in the TX FIFO. The

BE électronique automobile 5e année ESPE

 82

TXCTR is updated every time the DPUSHR is written or SPI data is transferred into the shift

register from the TX FIFO.

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register.

Entries are transferred from the TX FIFO to the shift register and shifted out as long as there

are valid entries in the TX FIFO. Every time an entry is transferred from the TX FIFO to the

shift register, the TX FIFO counter is decremented by one. At the end of a transfer, the TCF

bit in the SR is set to indicate the completion of a transfer. The TX FIFO is flushed by writing

a ‘1’ to the CLR_TXF bit in MCR. If an external SPI bus master initiates a transfer with a SPI

slave while the slave’s SPI TX FIFO is empty, the transmit FIFO underflow flag (TFUF) in

the slave’s SPIx_SR is set.

Figure 41 – Structure of the TX FIFO and associated counter (MPC5744PRM.pdf - Fig. 49-18 - p.
1630)

c. RX buffering and receiving mechanisms

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four

received SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer

when the received data in the shift register is transferred into the RX FIFO. SPI data is

removed (or popped) from the RX FIFO by reading the SPIx_POPR register. RX FIFO

entries can only be removed from the RX FIFO by reading the SPIx_POPR or by flushing the

RX FIFO. The RX FIFO counter field (RXCTR) in the SPI status register (SPIx_SR)

indicates the number of valid entries in the RX FIFO. The RXCTR is updated every time the

SPI _POPR is read or SPI data is copied from the shift register to the RX FIFO.

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO

is not full, SPI frames from the shift register are transferred to the RX FIFO. Every time an

SPI frame is transferred to the RX FIFO, the RX FIFO counter is incremented by one. If the

RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the SPIx_SR is

set indicating an overflow condition. Depending on the state of the ROOE bit in the

SPIx_MCR, the data from the transfer that generated the overflow is ignored or put in the

shift register. If the ROOE bit is set, the incoming data is put in the shift register. If the ROOE

bit is cleared, the incoming data is ignored.

BE électronique automobile 5e année ESPE

 83

Host software can remove (pop) entries from the RX FIFO by reading the SPIx_POPR. A

read of the SPIx_POPR decrements the RX FIFO counter by one. Attempts to pop data from

an empty RX FIFO are ignored, the RX FIFO counter remains unchanged. The data returned

from reading an empty RX FIFO is undetermined.

d. Transfer attributes

The transfer attributes define the baud rate, the clock polarity, the delays between clock edge

and CS and data sampling… In master mode, they define SCK signal properties. In Slave

mode, the transfer attributes of SPI must be the same than the Master transfer attribute to

ensure a correct reception.

The SPI module contains 4 CTAR register which defines the transfer attributes. The SPI slave

mode transfer attributes are set in the CTAR0_SLAVE.

When the SPI is the bus master, the CPOL and CPHA bits in the CTAR registers select the

polarity and phase of the serial clock, SCK_x. The polarity bit selects the idle state of the

SCK_x. The clock phase bit selects if the data on SOUT_x is valid before or on the first

SCK_x edge. In slave mode, clock polarity, clock phase and number of bits to transfer must

be identical for the master device and the slave device to ensure proper transmission.

The frame size is configurable from 4 to 16 with the field FMSZ.

The SCK_x frequency and the delay values for serial transfer are generated by dividing the

system clock frequency by a prescaler and a scaler with the option of doubling the baud rate.

The baud rate is the frequency of the serial communication clock (SCK_x). The system clock

is divided by a baud rate prescaler (defined by CTAR[PBR]) and baud rate scaler (defined by

CTAR[BR]) to produce SCK_x with the possibility of doubling the baud rate. The DBR, PBR,

and BR fields in the CTARs select the frequency of SCK_x using the following formula:

The CS_x to SCK_x delay is the length of time from assertion of the CS_x signal to the first

SCK_x edge.

The after SCK_x delay is the length of time between the last edge of SCK_x and the negation

of CS_x.

The delay after transfer is the length of time between negation of the CSx signal for a frame

and the assertion of the CSx signal for the next frame.

e. Interrupts

The SPI has five conditions that can generate interrupt requests:

▪ End of transfer queue has been reached (flag EOQF): it indicates that the end of a

transmit queue is reached. The end of queue request is generated when the EOQ bit in

the executing SPI command is asserted and the EOQF_RE bit in the RSER is set.

BE électronique automobile 5e année ESPE

 84

▪ Current frame transfer is complete (flag TCF): it indicates the end of the transfer of a

serial frame. The transfer complete request is generated at the end of each frame

transfer when the TCF_RE bit is set in the RSER.

▪ TX FIFO underflow has occurred (flag TFUF): it indicates that an underflow

condition in the TX FIFO has occurred. If an external SPI bus master initiates a

transfer with a SPI slave while the slave’s TX FIFO is empty, the transmit FIFO

underflow flag (TFUF) in the slave’s SR is set. If the TFUF bit is set while the

TFUF_RE bit in the RSER is set, an interrupt request is generated.

▪ RX FIFO overflow has occurred (flag RFOF): it indicates that an overflow condition

in the RX FIFO has occurred. A receive FIFO overflow request is generated when RX

FIFO and shift register are full and a transfer is initiated. The RFOF_RE bit in the

RSER must be set for the interrupt request to be generated. Depending on the state of

the ROOE bit in the MCR, the data from the transfer that generated the overflow is

either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming

data is shifted in to the shift register. If the ROOE bit is negated, the incoming data is

ignored.

▪ FIFO overrun has occurred (flag TFUF or RFOF): it indicates that at least one of the

FIFOs in the SPI has exceeded its capacity. The FIFO overrun request is generated by

logically OR’ing together the RX FIFO overflow and TX FIFO underflow signals.

3. Configuration of the SPI module

a. Module configuration

The module configuration is ensured by the MCR register.

The bit MSTR configures the module in Master (‘1’) or Slave (‘0’) mode. The MDIS bit

allows the module disable mode entry. The FRZ bit stops SPI transfer when the device enters

in debug mode. The bit HALT provides a mechanism for software to start (‘0’) and stop (‘1’)

BE électronique automobile 5e année ESPE

 85

DSPI transfer: transition from STOPPED to RUNNING mode. The bits DIS_TXF and

DIS_RXF disable RX and TX FIFO. The bits CLR_TXF and CLR_RXF clear or flush the TX

or RX FIFO by clearing the associated counter. See MCU datasheet for details about the other

bits.

The bits in PCSIS enables/disables the corresponding eight peripheral chip select signals.

b. Clock and transfer attributes

The SPI modules contain four clock and transfer attribute registers (CTAR[n]) which are used

to define different transfer attribute configurations. Each CTAR controls the frame size, the

Baud rate and transfer delay values, the clock phase and polarity and defines if MSB or LSB

is considered as first bit. Do not write in this register in RUNNING mode (HALT = 0).

In slave mode, CTAR0_SLAVE is used to set the slave transfer attributes. When the SPI is

configured as an SPI master, the CTAS field in the command portion of the TX FIFO entry

selects which of the SPIx_CTAR registers is used on a per-frame basis.

The field FMSZ defines the frame size (from 4 to 16). The number of bits transferred per

frame is equal to the FMSZ value plus 1. CPOL bit defines the clock polarity, i.e. the inactive

state of SCLK. CPHA defines the clock phase, i.e. which SCK edge causes the data to change

or to be captured. The bit LSBFE defines if the LSB or MSB is transferred first.

The baud rate depends on DBR, PBR and BR bit fields (see datasheet for more information

about computation of bit rate). Depending on DBR, PBR and CPHA, duty cycle of SCLK is

changed.

The fields PCSSCK, PASC, PDT, CSSCK, ASC and DT define different delays between

either SCK, CS and data.

c. TX FIFO writing

Data are written by software in TX FIFO by the Push TX FIFO register PUSHR. Data written

in this register are written in TX FIFO. This register contains command bits and data (16 bits).

The field CTAS defines which CTAR register is used for clock and transfer attributes. The bit

PCSx defines if signal CSx is asserted during transfer. Setting CONT to '1' asserts the CS

signal to '0' between transfers. As normal frame size is 8 or 16 bits for this MCU, this option

can be useful for transfer with frame size larger 16 bits. When the module is disabled, writing

to this register does not update the FIFO. Therefore, any reads performed while the module is

disabled return the last PUSHR write performed while the module was still enabled.

BE électronique automobile 5e année ESPE

 86

The data in TX FIFO are visible in registers TXFRn (n from 0 to 3). They are read-only

registers and cannot be modified.

Tips: An 8- or 16-bit write access transfers all 32 bits to the TX FIFO. Thus, update all the

fields of this register simultaneously !

d. RX FIFO writing

Received data can be read by software in RX FIFO through the POP RX register POPR. This

register contains only received data (16 bits). Once the RX FIFO is read, the read data pointer

is moved to the next entry in the RX FIFO. Therefore, read POPR only when you need the

data. A write to this register will generate a Transfer Error.

The data in RX FIFO are visible in registers RXFRn (n from 0 to 3). They are read-only

registers and cannot be modified.

Tips: the POPR register is cleared after a reading. However, it can generate application error

during in-situ debugging. Indeed, each time the debugging tool reads POPR, this register will

be cleared. For example, if the application software embedded in MCU memory reads POPR

just after the debugging tool, POPR has been cleared to the reading of POPR by the

application software will return 0 instead of the actual value received by SPI. During

debugging session, it is recommended to not read POPR to prevent this problem.

e. Interrupt/DMA configuration and status

The RSER enables flag bits in the SR to generate interrupt requests. Do not write to the RSER

while the SPI is running.

BE électronique automobile 5e année ESPE

 87

The status of the module is indicated by flag bits in status register SR. They are set by

hardware and reflect the status of SPI module. They can be cleared by software only by

writing ‘1’.

TCF flag indicates that a transfer is completed, i.e. all bits in a frame have been shifted out.

EOQF flag indicates that the last entry in queue transmission is ongoing. The flag TFFF

indicates that the TX FIFO is not full and be filled. It is cleared by software or when the FIFO

is full.

RFDF flag indicates the the RX FIFO is not empty and the received data can be drained in

POPR register. The flags TFUF and RFOF reflect TX FIFO underflow and RX FIFO

overflow conditions.

The bit TXRXS indicates that TX and RX operation are enabled (RUNNING state) or

disabled (STOPPED mode). TXCTR and RXCTR are TX and RX FIFO counter.

TXNXTPTR indicates which entry in TX FIFO will be transmitted during the next transfer.

POPNXTPTR contains a pointer to the RX FIFO entry that is returned when the POPR is read.

The POPNXTPTR is updated when the POPR is read.

XVI - UART with LINFlex module
The main purpose of LINFlex module is the management of LIN communication, which is a

robust low-data rate bus widely-used in automotive. However, LINFlex also provides support

BE électronique automobile 5e année ESPE

 88

for UART transfers. Data can be read by an hyperterminal for debugging purpose. Another

possible use for debugging motor control applications is the interfacing with Freemaster tool.

This chapter aims at describing how to configure LINFlex as UART interface. More

information about LINFlex can be found in Chapter 52 - LINFlexD of the reference manual.

1. Presentation of the LINFlex module in UART mode

MPC5744P contains two LINFlex modules: LINFlex0 and LINFlex2, with UART and LIN

with DMA support. The module uses two different clocks: HALF_SYSCLK to generate the

baud rate of the signal, and PBRIDGE_clk for all the other functions. Full-duplex

8/9/13/16/17-bit communication is supported. A parity bit can be added to each frame. The

structure of the frame is illustrated in Figure 42 for a 8-bit data frame.

Figure 42 – Structure of the 8-bit data frame in UART mode (MPC5744PRM.pdf - Fig. 52-15 - p.
1965)

Transmitted or received messages are stored in a 8 bytes buffer, whose structure is described

in Figure 43. This buffer is divided in two parts: the first four bytes are dedicated for

transmission (Tx0 to Tx3, i.e. BDR0 to BDR3), while the last four are for reception (Rx0 to

Rx3, i.e. BDR4 to BDR7). In case of 16-bit frame, the lower significant eight bits are written

in BDR0 and the upper significant eight bits in BDR1. It is the same for reception.

Figure 43 – Structure of the 8-bytes UART mode (MPC5744PRM.pdf - Fig. 52-20 - p. 1967)

2. Configuration

a. Initialization of LINFlex module

The configuration of the module can be done only in initialization mode. LINCR1 register

consists of control bits used to configure features of the LINFlexD. The bit SLEEP is set to '1'

to enter in Sleep mode. The bit INIT is set to '1' to enter in initialization mode. After clearing

INIT and SLEEP, the module enters in normal mode, either if it is used in LIN or UART

mode. Once all the initialization is finished, the module must exit the initialization mode by

setting INIT to '0'.

BE électronique automobile 5e année ESPE

 89

b. Configuration for UART mode

The configuration of the UART mode depends on the register UARTCR. The bit UART has

to be set to '1' to enable UART mode and start the configuration of this mode. TxEN and

RxEN enables the transmitter and the receiver respectively.

WL0 and WL1 sets the word length in UART mode (if WLS is set, special word length is

used). PCE enables the presence of parity bit. The parity control is configured by the bits PC0

and PC1. The number of stop bits is set by SBUR bits.

Transmitter and receiver are configured in buffer or FIFO mode according to bits TFBM and

RFBM. The fields TFDL_TFC and TFDL_RFC define the number of bytes to be transmitted

or received when the module is configured in buffer mode.

c. Status of the UART

The register UARTSR gives the status of the LINFlex module in UART mode. The bit

DTFTFF is set by hardware (if in buffer mode) to indicate that data transmission is completed.

The bit DRFRFE indicates that the number of bytes programmed in RDFL have been received.

The bit RMB indicates that the data in the reception buffer can be read.

BE électronique automobile 5e année ESPE

 90

d. Configuration of the baud rate

The baud rate is generated from the LIN clock which is equal to HALFSYS_clk. It is given by

the following equation:

LDIV

clkLIN
RateBaud


=

16

_

The division factor can be an integer or a fraction, depending on configuration of registers

LINFBRR and LINIBRR. The register LINIBRR defines the integer part of LDIV, defined on

20 bits (from 0 to 1048575). If it is equal to 0, the LIN clock is disabled. The register

LINFBRR defines the fractional part of LDIV. The fraction is given in sixteenth part, so it is

defined from 0 to 15/16. Thus, the baud rate can be determined according to:









+

=

16
16

_

LINFBRR
LINIBRR

clkLIN
RateBaud

In order to determine the configuration of LINIBRR and LINFBRR according to the desired

baud rate, use the following procedure:

 1. Determine LDIV:
RateBaud

clkLIN
LDIV


=

16

_

 2. LINIBRR is the integer part of LDIV

 3. LINFBRR is the integer part of ()LDIVpartfractional _16

If you want to ensure that the obtained baud rate is equal to the desired baud rate computed

exactly: LIN_clk/Baud Rate. This ratio is equal to 16xLDIV. If this ratio is an integer, then

the obtained baud rate will be the desired baud rate.

e. Transmission of a message

In order to start transmission in the UART mode, UART bit should be set and the transmitter

enable bit should be set. Transmission starts when the BDR0 (least significant data byte) is

programmed and continues until the number of bytes/halfwords transmitted is equal to the

value in the TDFL bits in UARTCR.

The data buffer is accessible through two registers:

▪ BDRL for the 4 least significant buffer registers BDR0 to BDR3

▪ BDRM for the 4 most significant buffer registers BDR4 to BDR7

In 8 bytes transmission, transmitted data are stored in BDR0 to BDR3 registers. Thus, write

the data to be transmitted in BDRL register (the first byte must be written in DATA0 field).

When data is transmitted, the bit DTFTFF in register UARTSR is set to '1'. The bit should be

cleared by writing '1' at the end of transmission.

BE électronique automobile 5e année ESPE

 91

f. Reception of a message

The reception of a message is indicated by the flag DRFRFE in UARTSR register. A message

consists in a number of bytes defined by the field RDLF_RFC in UARTCR register. When

the buffer data are ready to be read, the bit RMB in UARTSR is set to '1'.

In 8 bytes reception, received data are stored in BDR4 to BDR7 registers. The data can be

read in BDRM register. After the reception of the message, clear the bits DRFRFE and RMB

by writing '1'.

XVII - Fault Collection and Control Unit (FCCU)
FCCU is one of the central block in safety management of MPC5744P. This chapter aims at

describing how to configure the FCCU. More information about FCCU can be found in

Chapter 69 of the reference manual.

1. Presentation - Overview

The Fault Collection and Control Unit (FCCU) offers a hardware peripheral which aims at

collecting faults and placing the MCU into a safe state when a failure in the device is

detected, without any CPU intervention.

FCCU has the following main features:

▪ Configurable fault control (from HW or SW faults)

▪ Configurable internal reactions for each non-critical fault (NCF): no reaction, IRQ

(alarm state), short/long functional reset and non-maskable interrupt (NMI) (fault state)

▪ External reactions via two configurable output pins

▪ Lockable configuration

▪ Fault injection (for test purpose)

▪ Lockable configuration

The block diagram of the FCCU is shown below:

▪ the REG interface includes the register file, the IPS bus interface, the IRQ interface

and the parity block (PB) for the configuration registers

▪ the HNSHK blocks (master and slave) includes the FSM's ability to support the

handshake between the REG interface and the FSM unit due to the usage of 2

asynchronous clocks (IPS system clock and RC oscillator clock)

▪ the Finite State Machine (FSM) unit implements the main functions of the FCCU

▪ the FAULT interface is dedicated to fault conditioning and management

▪ EOUT0 and EOUT1 interfaces manage EOUT[1:0] error outputs

The FCCU is clocked by CLKSYS primarily, but also by CLKSAFE 0 and 1 provided by a

RC oscillator which produces two redundant 16 MHz clocks. CLKSAFE0 and 1 are often

referred to as the same clock (CLKSAFE). CLKSAFE is not synchronized on CLKSYS.

FCCU is designed to function when CLKSYS is faster than the CLKSAFE clocks.

FCCU is connected to Reset Generation Module (RGM) and interrupt controller (INTC).

Depending on the type of faults and FCCU configuration, an IRQ or MCU reset can be

generated on fault detection. The FCCU is also connected to the wake up unit module to force

the MCU to exit a sleep mode in case of fault, and to the CPU to send it non maskable

interrupts (NMI) request when the FCCU enters in a Fault state.

BE électronique automobile 5e année ESPE

 92

Figure 44 – FCCU block diagram (MPC5744PRM.pdf - Fig. 69-1 - p. 2720)

The FCCU provides two bidirectional signals (EOUT[1:0]) as a failure indication to the

external world. Different fault-output modes (protocols) for the fault-output (EOUT) interface

are supported (FCCU_CFG[FOM]): dual rail encoding, time-switching protocol, bistable

protocol.

The FCCU collects faults from 75 sources, whicn may trigger Non-Critical Fault (NCF)

depending on FCCU configuration by the user. The mapping between the NCF and the fault

sources is given in Table 7-33 p 236 of the MPC5744P reference manual.

The FCCU manages fault recovery according to two methods:

▪ HW recovery fault: the fault signal is latched externally to the FCCU in the module

where the fault occurred. The fault indication is an edge-triggered and level-sensitive

signal that remains asserted until the fault cause is deasserted. The status is

automatically cleared when the fault signal goes to 1. No SW intervention in the

FCCU is required to recover the fault condition.

▪ SW recoverable fault: The fault signal is latched in the FCCU. The fault recovery is

executed following a SW recovery procedure (status/flag register clearing).

FCCU supports three types of reset:

▪ destructive: the entire chip is initialized as a result of a power-failure condition

▪ long functional: the digital circuitry is initialized except the FCCU and STCU2 (Self-

Test Control Unit, dedicated to the built-in-self test)

▪ short functional: the digital circuitry is initialized except the FCCU, OCOTP and

STCU2

2. Functional description of FCCU

The operation of the FCCU is described by a finite state machine shown in Figure 45, where

four states can be identified:

▪ CONFIG: this mode is used to change the configuration of FCCU, through a subset of

configuration registers accessible only in write mode. This mode is accessible from the

NORMAL mode and only if the configuration has not been locked. The Configuration

to Normal state transition can be executed by SW or automatically following a timeout

BE électronique automobile 5e année ESPE

 93

condition of the watchdog. The incoming faults, occurring during the configuration

phase will be processed during the NORMAL state.

▪ NORMAL: this is the operating state when no faults occur or after a reset exit.

Transitions occur when:

o unmasked noncritical faults with the timeout disabled → FCCU moves to Fault

state

o unmasked noncritical faults with the timeout enabled → FCCU moves to

Alarm state

o masked noncritical faults → FCCU stays in Normal state

▪ ALARM: FCCU moves into this state when an unmasked noncritical fault occurs and

the timeout is enabled. this fault may be recovered within a programmable timeout

period, before it generates a transition to Fault state. The timeout is reinitialized if

FCCU enters Normal state.

▪ FAULT: FCCU moves into this state either when timeout related to a noncritical fault

when FCCU is in Alarm state, or when unmasked noncritical faults with the timeout

disabled

The transition between NORMAL, ALARM and FAULT states may trigger NMI interrupt,

EOUT signaling, short/long functional reset. Multiple faults can occur at the same time. If

only one fault is configured without alarm, the FCCU will enter directly in FAULT state. This

is due to the priority scheme given to fault and alarm: Fault has a higher priority than Alarm.

The FAULT to NORMAL state transition occurs only if all the NCF have been cleared.

Figure 45 – FCCU state diagram (MPC5744PRM.pdf - Fig. 69-2 - p. 2725)

3. EOUT interface

EOUT[1:0] error pads provide two bidirectional signals provided by FCCU to indicate MCU

failure to external components (e.g. power system basis chip). These output signals support

different protocols:

▪ Dual-rail: in non-faulty condition or CONFIG mode, EOUT[1] and EOUT[0] toggle

and have inverted logical state (toggling between '01' and '10'). In case of fault, they

continue to toggle but they have the same logical state ('00' and '11'). In RESET mode,

BE électronique automobile 5e année ESPE

 94

they are in high impedance state so they do not toggle. The toggling frequency is 61

Hz.

▪ Time-switching: in NORMAL or ALARM state, EOUT[1] and EOUT[0] toggle at a

frequency defined by CFG[FOP] and have inverted logical state. The frequency of this

signal is derived from CLKSAFE. In FAULT state, EOUT[0] is set to '0' and EOUT[1]

to '1'. In RESET mode, they are in high impedance state so they do not toggle.

▪ Bistable: EOUT[1:0] do not toggle in this protocol. In non faulty condition or

CONFIG mode, EOUT[1:0] = '01'. In faulty condition, EOUT[1:0] = '10'. In RESET

mode, they are in high impedance state.

In dual-rail and time-switching protocols, two switching modes can be defined according to

the bit SM in CFG register. In slow switching mode, NORMAL - FAULT transition is

indicated after a maximum delay equal to the half-period of the toggling period. Thus, there is

no timing violation of EOUT signaling protocol. In fast switching mode, NORMAL - FAULT

transition is indicated immediately.

4. FCCU Output Supervision Unit (FOSU)

The FOSU block ensures a supervision of the correctness of the FCCU response. If the FCCU

fails to respond in a given time window after a fault is signaled (given by the timer

FOSU_COUNT), a destructive reset is triggered. If the FCCU has a reaction to the incoming

fault (IRQ, Error out, reset), the FOSU timer stops. The value of FOSU_COUNT is 65535

IRCOSC clock cycles, i.e. 4.096 ms.

An important thing to note is that the FCCU cannot have any reaction to incoming faults

during CONFIG state. If a fault triggers during CONFIG and if the FCCU remains in this

state for a too long time, FOSU will reset the circuit. That's why the FCCU should not be kept

in CONFIG for longer than the FOSU_COUNT duration.

5. FCCU configuration

The FCCU contains numerous configuration registers to define the reaction of the FCCU to

incoming faults. All these registers are accessible in write mode only in CONFIG states.

These configuration registers return to the default value after configuration watchdog timer

expires. So the time to configure FCCU registers is limited. These registers can also be locked

by FCCU_TRANS_LOCK and FCCU_PERMNT_LOCK registers. The configuration register

setting has effect only when the FCCU state exits from the CONFIG state.

For each possible NCF failure source a different reaction shall be configurable through the

use of NMI, IRQ, long/short reset selection registers as well as no reaction by disabling the

former registers. It is not possible for a single event upset to switch off all reactions on

failures as implementation is per fault source (but it will be possible to switch them all off by

SW if intended). Failures themselves are not able to disable all reactions and indications.

a. Configuration entry/exit

A specific procedure has to be followed to enter in CONFIG mode or exit this mode:

▪ 1. Write the key into the CTRLK register

▪ 2. Write the CTRL register (operations OP1 or OP2)

BE électronique automobile 5e année ESPE

 95

OP1 means 'Set the FCCU into the CONFIG state' and OP2 ' Set the FCCU into the

NORMAL state'. The key to write into CTRLK for OP1 is 0x913756AF, and is 0x825A132B

for OP2.

Then, write in the field OPR of register CTRL the code of the operation (enter CONFIG or

NORMAL mode): '0001' for OP1 and '0010' for OP2.

b. Global configuration of FCCU

The global configuration of FCCU is defined by the register CFG. It consists mainly in the

configuration of EOUT[1:0] pins. If FCCU_SET_AFTER_RESET is set to '1', the FCCU

starts functioning after a power-on reset. FCCU_SET_CLEAR defines the error pin state

during FAULT. The toggling frequency of error output signal is defined by bit FOPE and

field FOP according to the following equation:

The EOUT polarity during FAULT is defined by bit PS (only in time switching and Bistable

protocols). The error signaling protocol is selected by bits FOM.

c. Configuration of fault-recovery management for NCF

This ensured by the registers NCF_CFG[0..2] registers Each configuration register is

associated to 32 NCF channels.

Each bit of these registers define the fault recovery mode:

BE électronique automobile 5e année ESPE

 96

▪ if 0, a hardware-recovery fault mechanism is selected. They are self-recovered if the

root cause has been removed. In other word, if the input fault disappears, the related

status flag is cleared.

▪ if 1, software-recovery fault mechanism is selected. They are recovered by software,

i.e. when the software clears the associated status flag.

Hardware recoverable faults should be configured only if a previous latching stage captures

and holds the physical fault; otherwise, the fault can be lost. All other faults should be

configured as software faults.

The fault reaction is defined by the NCFS_CFG[0..4] registers (short or long functional reset

request pulse). Each configuration register is associated to 16 NCF channels.

Four reactions can be defined, according to the NCFSCx bits:

The NCF_S[0..2] registers contain the latched fault indication collected from the NCF sources.

Faults are latched also in the CONFIG state. No reactions are executed until the FCCU moves

in the NORMAL state.

FCCU reacts and moves from the NORMAL state into the ALARM state only if the

respective enable bit for a fault is set in the NCF_Ex register and the respective enable bit for

the timeout is set in the TOEx register. FCCU reacts and moves from the NORMAL or

ALARM state into the FAULT state if the respective enable bit for a fault is set in the

NCF_Ex register and the respective enable bit for the timeout is disabled in the TOEx register.

FCCU reacts and moves from the ALARM state into the FAULT state if the timeout (TO

register) is elapsed before recovering from the fault. The timeout is stopped only when the

FCCU returns in the NORMAL state.

The FCCU moves from the FAULT or ALARM state into the NORMAL state if all the

source faults that caused the transition into the FAULT state have been removed (HW

recoverable fault) or cleared via SW (SW recoverable fault).

The status bits of the NCF_Sx register, configured as SW recoverable faults, can be cleared

by the following locked sequence:

BE électronique automobile 5e année ESPE

 97

▪ 1. Write the proper key into the NCFK register.

▪ 2. Clear the status (flag) bit NCFSx => the opcode OP12 is automatically set into the

CTRL.OPR field.

▪ 3. Wait for the completion of the operation (CTRL.OPS field).

▪ 4. Read the NCF_Sx register in order to verify the effective deletion and in case of

failure to repeat the sequence

The SW application executes the NCF_Sx read operation by the following sequence:

1. Set the OP10 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

▪ 3. Read the NCF_Sx register.

In both cases, the correct non-critical fault key to write in register NCFK is 0xAB34 98FE.

The NCF_En registers enable the fault sources to allow a transition from the NORMAL into

the FAULT or ALARM state. In case of fault masking, the respective status bit into the

FCCU_NCF_Sn register is set (for debugging purposes), only the reaction is masked. Any

enabled fault should be programmed to result in a defined action.

The bits of the registers NCF_En defines if a transition into FAULT or ALARM state is

allowed or not. The registers NCF_TOE[0..2] defines if the transition is either in FAULT (if

bit set to '0') or ALARM (if bit set to '1') mode when the transition is enabled. The timer

(preset with the timeout value defined by TO register) is started when the FCCU moves into

the ALARM state. If the fault is not recovered within the timeout the FCCU moves from the

ALARM state to the FAULT state.

The NCF timeout value is defined by the register TO. The alarm timeout value should be

programmed to be less than FOSU_COUNT, or destructive resets may be generated by FOSU

(FCCU Output Supervision Unit) timeouts. The NCF timeout is clocked by the IRC oscillator.

The NCF timeout is defined by the following formulation:

d. Configuration state timeout

The CFG_TO register defines the preset value of the watchdog timer for the recovery from

the CONFIG state. If the configuration is not completed within the timeout, the FCCU moves

automatically from the CONFIG state to the NORMAL state and the default values for all the

configuration register is restored.

BE électronique automobile 5e année ESPE

 98

The watchdog timeout is clocked by CLKSAFE. The default timeout value is 4.096 ms.

Longer activation of CONFIG state can lead to resets if a failure is indicated during the time

the FCCU is in CONFIG state due to FOSU. The configuration timeout is defined according

to the following formulation.

Both Alarm and configuration timeout are related to watchdogs, whose counter values can be

read in register XTMR. The content of this register can be read according to a specific

procedure.

e. Status of the FCCU - source identification

The FCCU status is provided by the register STAT: if the system is in fault state, the status of

the error pins and the FCCU. The SW application executes a FCCU status read operation by

the following sequence:

▪ 1. Set the OP3 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

▪ 3. Read the FCCU status (STAT register).

The source of the NCF can be identified by the register N2AF status. A specific code is given

to each NCF source. However, in case of multiple NCF, the source cannot be identified. A

specific procedure has to be followed to read it:

▪ 1. Set the OP4 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

▪ 3. Read the N2AF_STATUS register.

The bit status can be cleared according to the following procedure:

▪ 1. Set the OP13 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field). (All the freeze registers

are cleared by this operation.)

Similarly, A2FF_STATUS register is used to identify the timeout trigger that caused the state

transition from the ALARM state to the FAULT state. A2FF can be read according to the

following procedure:

▪ 1. Set the OP5 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (FCCU_CTRL.OPS field).

▪ 3. Read the A2FF_STATUS register.

It can be cleared according to:

▪ 1. Set the OP13 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

Similarly, N2FF_STATUS register can be used to identify the source of the NCF that caused

the state transition from the NORMAL state to the FAULT state. To read this register:

▪ 1. Set the OP6 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

▪ 3. Read the N2FF_STATUS register.

To clear it:

▪ 1. Set the OP13 operation into the CTRL.OPR field.

BE électronique automobile 5e année ESPE

 99

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

Similarly, F2A_STATUS register can be used to identify the source of the NCF that caused

the state transition from the FAULT state to the ALARM state. To read this register:

▪ 1. Set the OP7 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

▪ 3. Read the N2FF_STATUS register.

To clear it:

▪ 1. Set the OP13 operation into the CTRL.OPR field.

▪ 2. Wait for the completion of the operation (CTRL.OPS field).

f. Software emulation of NCF

The register NCFF is used to generate fake faults. It is useful to verify the correct reaction of

the FCCU in case of NCF triggering.

g. Interrupt requests

Interrupt requests from the FCCU are enabled by the register IRQ_EN. Only the configuration

timeout error is considered. The bit CFG_TO_IEN must be set and also the bit

CFG_TO_STAT of the register IRQ_STAT.

IRQ_STAT register provides the FCCU interrupt status related to the following events:

▪ Configuration timeout error

▪ Alarm interrupt

▪ NMI interrupt

The registers IRQ_ALARM_EN[x] provides bits to enable the IRQ when an alarm is

triggered, according to the NCF channel source.

Non-maskable interrupts are generated according to the configuration of register NMI_EN[x].

h. Fault-output signaling

Registers EOUT_SIG_EN[x] to enable fault outputs depending on the NCF channel.

BE électronique automobile 5e année ESPE

 100

Fault-output (EOUT) signaling is enabled for the associated noncritical fault channels when

FCCU is configured for Bistable fault-output mode

